Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n$ with smooth boundary $partial M$. Suppose that $(M,g)$ admits a scalar-flat conformal metric. We prove that the supremum of the isoperimetric quotient over the scalar-flat conformal class is strictly larger than the best constant of the isoperimetric inequality in the Euclidean space, and consequently is achieved, if either (i) $nge 12$ and $partial M$ has a nonumbilic point; or (ii) $nge 10$, $partial M$ is umbilic and the Weyl tensor does not vanish at some boundary point.