ترغب بنشر مسار تعليمي؟ اضغط هنا

From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

171   0   0.0 ( 0 )
 نشر من قبل Stuart Hadfield
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.



قيم البحث

اقرأ أيضاً

We present a new hybrid, local search algorithm for quantum approximate optimization of constrained combinatorial optimization problems. We focus on the Maximum Independent Set problem and demonstrate the ability of quantum local search to solve larg e problem instances on quantum devices with few qubits. The quantum local search algorithm iteratively finds independent sets over carefully constructed neighborhoods and combines these solutions to obtain a global solution. We compare the performance of this algorithm on 3-regular graphs with up to 100 nodes against the well known classical Boppana-Halld{o}rsson algorithm for the Maximum Independent Set problem.
132 - Zain H. Saleem 2019
The maximum independent set (MIS) problem of graph theory using the quantum alternating operator ansatz is studied. We perform simulations on the Rigetti Forest simulator for the square ring, $K_{2,3}$, and $K_{3,3}$ graphs and analyze the dependence of the algorithm on the depth of the circuit and initial states. The probability distribution of observation of the feasible states representing maximum independent sets is observed to be asymmetric for the MIS problem, which is unlike the Max-Cut problem where the probability distribution of feasible states is symmetric. For asymmetric graphs it is shown that the algorithm clearly favors the independent set with the larger number of elements even for finite circuit depth. We also compare the approximation ratios for the algorithm when we choose different initial states for the square ring graph and show that it is dependent on the choice of the initial state.
The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The s et of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly-degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer is used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
Determining Hamiltonian ground states and energies is a challenging task with many possible approaches on quantum computers. While variational quantum eigensolvers are popular approaches for near term hardware, adiabatic state preparation is an alter native that does not require noisy optimization of parameters. Beyond adiabatic schedules, QAOA is an important method for optimization problems. In this work we modify QAOA to apply to finding ground states of molecules and empirically evaluate the modified algorithm on several molecules. This modification applies physical insights used in classical approximations to construct suitable QAOA operators and initial state. We find robust qualitative behavior for QAOA as a function of the number of steps and size of the parameters, and demonstrate this behavior also occurs in standard QAOA applied to combinatorial search. To this end we introduce QAOA phase diagrams that capture its performance and properties in various limits. In particular we show a region in which non-adiabatic schedules perform better than the adiabatic limit while employing lower quantum circuit depth. We further provide evidence our results and insights also apply to QAOA applications beyond chemistry.
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational algorithm which offers the potential to handle combinatorial optimization problems. Introducing constraints in such combinatorial optimization problems po ses a major challenge in the extensions of QAOA to support relevant larger scale problems. In this paper, we introduce a quantum machine learning approach to learn the mixer Hamiltonian that is required to hard constrain the search subspace. We show that this method can be used for encoding any general form of constraints. By using a form of an adaptable ansatz, one can directly plug the learnt unitary into the QAOA framework. This procedure gives the flexibility to control the depth of the circuit at the cost of accuracy of enforcing the constraint, thus having immediate application in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constrains. Finally using this metric, we evaluate the performance of the proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا