ﻻ يوجد ملخص باللغة العربية
This paper develops further the semi-classical theory of an harmonic oscillator acted on by a Gaussian white noise force discussed in (arXiv:1508.02379). Here I add to that theory the effects of Brownian damping (friction). Albeit semi-classical, the theory can be used to model quantum expectations and probabilities. I consider several examples.
We return to the description of the damped harmonic oscillator by means of a closed quantum theory with a general assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model recently proposed by one of the authors. W
Using the Wigner-Weyl mapping of quantum mechanics to phase space we consider exactly the quantum mechanics of an harmonic oscillator driven by an external white noise force or whose frequency is time dependent, either adiabatically or parametrically
In this paper we review the basic results concerning the Wigner transform and then we completely solve the quantum forced harmonic/inverted oscillator in such a framework; eventually, the tunnel effect for the forced inverted oscillator is discussed.
Quasi-periodically driven quantum parametric oscillators have been the subject of several recent investigations. Here we show that for such oscillators, the instability zones of the mean position and variance (alternatively the mean energy) for a tim
The quantum stochastic Schroedinger equation or Hudson-Parthasareathy (HP) equation is a powerful tool to construct unitary dilations of quantum dynamical semigroups and to develop the theory of measurements in continuous time via the construction of