ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of Near-Earth Asteroids using KMTNet-SAAO

243   0   0.0 ( 0 )
 نشر من قبل Nicolas Erasmus
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here VRI spectrophotometry of 39 near-Earth asteroids (NEAs) observed with the Sutherland, South Africa, node of the Korea Microlensing Telescope Network (KMTNet). Of the 39 NEAs, 19 were targeted, but because of KMTNets large 2 deg by 2 deg field of view, 20 serendipitous NEAs were also captured in the observing fields. Targeted observations were performed within 44 days (median: 16 days, min: 4 days) of each NEAs discovery date. Our broadband spectrophotometry is reliable enough to distinguish among four asteroid taxonomies and we were able to confidently categorize 31 of the 39 observed targets as either a S-, C-, X- or D-type asteroid by means of a Machine Learning (ML) algorithm approach. Our data suggest that the ratio between stony S-type NEAs and not-stony (C+X+D)-type NEAs, with H magnitudes between 15 and 25, is roughly 1:1. Additionally, we report ~1-hour light curve data for each NEA and of the 39 targets we were able to resolve the complete rotation period and amplitude for six targets and report lower limits for the remaining targets.



قيم البحث

اقرأ أيضاً

The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 par ameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x exp[-x^2/(2sigma^2)]/sigma^2$ for positive x. The peak value is at x=sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.
The nature and origin of the asteroids orbiting in near-Earth space, including those on a potentially hazardous trajectory, is of both scientific interest and practical importance. We aim here at determining the taxonomy of a large sample of near-Ear th (NEA) and Mars-crosser (MC) asteroids and analyze the distribution of these classes with orbit. We use this distribution to identify their source regions and to study the strength of planetary encounters to refresh asteroid surfaces. We measure the photometry of these asteroids over four filters at visible wavelengths on images taken by the SDSS. These colors are used to classify the asteroids into a taxonomy consistent with the widely used Bus-DeMeo taxonomy based on spectroscopy. We report here on the taxonomic classification of 206 NEAs and 776 MCs determined from SDSS photometry, representing an increase of 40% and 663% of known taxonomy classifications in these populations. Using the source region mapper by Greenstreet et al. (2012), we compare the taxonomic distribution among NEAs and main-belt asteroids of similar diameters. Both distributions agree at the few percent level for the inner part of the Main Belt and we confirm this region as a main source of near-Earth objects. The effect of planetary encounters on asteroid surfaces are also studied by developing a simple model of forces acting on a surface grain during planetary encounter, which provides the minimum distance at which a close approach should occur to trigger resurfacing events. By integrating numerically the orbit of the 519 S-type and 46 Q-type asteroids back in time and monitoring their encounter distance with planets, we seek to understand the conditions for resurfacing events. The population of Q-type is found to present statistically more encounters with Venus and the Earth than S-types, although both types present the same amount of encounters with Mars.
We seek evidence of the Yarkovsky effect among Near Earth Asteroids (NEAs) by measuring the Yarkovsky-related orbital drift from the orbital fit. To prevent the occurrence of unreliable detections we employ a high precision dynamical model, including the Newtonian attraction of 16 massive asteroids and the planetary relativistic terms, and a suitable astrometric data treatment. We find 21 NEAs whose orbital fits show a measurable orbital drift with a signal to noise ratio (SNR) greater than 3. The best determination is for asteroid (101955) 1999 RQ36, resulting in the recovery of one radar apparition and an orbit improvement by two orders of magnitude. In addition, we find 16 cases with a lower SNR that, despite being less reliable, are good candidates for becoming stronger detections in the future. In some cases it is possible to constrain physical quantities otherwise unknown by means of the detected orbital drift. Furthermore, the distribution of the detected orbital drifts shows an excess of retrograde rotators that can be connected to the delivery mechanism from the most important NEA feeding resonances and allows us to infer the distribution for NEAs obliquity. We discuss the implications of the Yarkovsky effect for impact predictions. In particular, for asteroid (29075) 1950 DA our results favor a retrograde rotation that would rule out an impact in 2880.
We present here multi-band photometry for over 2000 Main-belt asteroids. For each target we report the probabilistic taxonomy using the measured V-R and V-I colors in combination with a machine-learning generated decision surface in color-color space . Through this method we classify >85% of our targets as one the four main Bus-DeMeo complexes: S-, C-, X-, or D-type. Roughly one third of our targets have a known associated dynamic family with 69 families represented in our data. Within uncertainty our results show no discernible difference in taxonomic distribution between family members and non-family members. Nine of the 69 families represented in our observed sample had 20 or more members present and therefore we investigate the taxonomy of these families in more detail and find excellent agreement with literature. Out of these 9 well-sampled families, our data show that the Themis, Koronis, Hygiea, Massalia, and Eunomia families display a high degree of taxonomic homogeneity and that the Vesta, Flora, Nysa-Polana, and Eos families show a significant level of mixture in taxonomies. Using the taxonomic purity and the degree of dispersion in observed colors for each of the 9 well-sampled collisional families we also speculate which of these families potentially originated from a differentiated parent body and/or is a family with a possible undetermined nested family. Additionally, we obtained sufficient photometric data for 433 of our targets to extract reliable rotation periods and observe no obvious correlation between rotation properties and family membership.
280 - Takashi Ito , Renu Malhotra 2009
Recent lunar crater studies have revealed an asymmetric distribution of rayed craters on the lunar surface. The asymmetry is related to the synchronous rotation of the Moon: there is a higher density of rayed craters on the leading hemisphere compare d with the trailing hemisphere. Rayed craters represent generally the youngest impacts. The purpose of this paper is to test the hypotheses that (i) the population of Near-Earth asteroids (NEAs) is the source of the impactors that have made the rayed craters, and (ii) that impacts by this projectile population account quantitatively for the observed asymmetry. We carried out numerical simulations of the orbital evolution of a large number of test particles representing NEAs in order to determine directly their impact flux on the Moon. The simulations were done in two stages. In the first stage we obtained encounter statistics of NEAs on the Earths activity sphere. In the second stage we calculated the direct impact flux of the encountering particles on the surface of the Moon; the latter calculations were confined within the activity sphere of the Earth. A steady-state synthetic population of NEAs was generated from a debiased orbital distribution of the known NEAs. We find that the near-Earth asteroids do have an asymmetry in their impact flux on the Moon: apex-to-antapex ratio of 1.32 +/- 0.01. However, the observed rayed crater distributions asymmetry is significantly more pronounced: apex-to-antapex ratio of 1.65 +/- 0.16. Our results suggest the existence of an undetected population of slower (low impact velocity) projectiles, such as a population of objects nearly coorbiting with Earth; more observational study of young lunar craters is needed to secure this conclusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا