ترغب بنشر مسار تعليمي؟ اضغط هنا

On Low-Risk Heavy Hitters and Sparse Recovery Schemes

64   0   0.0 ( 0 )
 نشر من قبل Vasileios Nakos
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the heavy hitters and related sparse recovery problems in the low-failure probability regime. This regime is not well-understood, and has only been studied for non-adaptive schemes. The main previous work is one on sparse recovery by Gilbert et al.(ICALP13). We recognize an error in their analysis, improve their results, and contribute new non-adaptive and adaptive sparse recovery algorithms, as well as provide upper and lower bounds for the heavy hitters problem with low failure probability.



قيم البحث

اقرأ أيضاً

We study the distinct elements and $ell_p$-heavy hitters problems in the sliding window model, where only the most recent $n$ elements in the data stream form the underlying set. We first introduce the composable histogram, a simple twist on the expo nential (Datar et al., SODA 2002) and smooth histograms (Braverman and Ostrovsky, FOCS 2007) that may be of independent interest. We then show that the composable histogram along with a careful combination of existing techniques to track either the identity or frequency of a few specific items suffices to obtain algorithms for both distinct elements and $ell_p$-heavy hitters that are nearly optimal in both $n$ and $epsilon$. Applying our new composable histogram framework, we provide an algorithm that outputs a $(1+epsilon)$-approximation to the number of distinct elements in the sliding window model and uses $mathcal{O}left(frac{1}{epsilon^2}log nlogfrac{1}{epsilon}loglog n+frac{1}{epsilon}log^2 nright)$ bits of space. For $ell_p$-heavy hitters, we provide an algorithm using space $mathcal{O}left(frac{1}{epsilon^p}log^2 nleft(log^2log n+logfrac{1}{epsilon}right)right)$ for $0<ple 2$, improving upon the best-known algorithm for $ell_2$-heavy hitters (Braverman et al., COCOON 2014), which has space complexity $mathcal{O}left(frac{1}{epsilon^4}log^3 nright)$. We also show complementing nearly optimal lower bounds of $Omegaleft(frac{1}{epsilon}log^2 n+frac{1}{epsilon^2}log nright)$ for distinct elements and $Omegaleft(frac{1}{epsilon^p}log^2 nright)$ for $ell_p$-heavy hitters, both tight up to $mathcal{O}left(loglog nright)$ and $mathcal{O}left(logfrac{1}{epsilon}right)$ factors.
In the long-studied problem of combinatorial group testing, one is asked to detect a set of $k$ defective items out of a population of size $n$, using $m ll n$ disjunctive measurements. In the non-adaptive setting, the most widely used combinatorial objects are disjunct and list-disjunct matrices, which define incidence matrices of test schemes. Disjunct matrices allow the identification of the exact set of defectives, whereas list disjunct matrices identify a small superset of the defectives. Apart from the combinatorial guarantees, it is often of key interest to equip measurement designs with efficient decoding algorithms. The most efficient decoders should run in sublinear time in $n$, and ideally near-linear in the number of measurements $m$. In this work, we give several constructions with an optimal number of measurements and near-optimal decoding time for the most fundamental group testing tasks, as well as for central tasks in the compressed sensing and heavy hitters literature. For many of those tasks, the previous measurement-optimal constructions needed time either quadratic in the number of measurements or linear in the universe size. Most of our results are obtained via a clean and novel approach which avoids list-recoverable codes or related complex techniques which were present in almost every state-of-the-art work on efficiently decodable constructions of such objects.
Finding heavy hitters has been of vital importance in network measurement. Among all the recent works in finding heavy hitters, the Elastic sketch achieves the highest accuracy and fastest speed. However, we find that there is still room for improvem ent of the Elastic sketch in finding heavy hitters. In this paper, we propose a tailored Elastic to enhance the sketch only for finding heavy hitters at the cost of losing the generality of Elastic. To tailor Elastic, we abandon the light part, and improve the eviction strategy. Our experimental results show that compared with the standard Elastic, our tailored Elastic reduces the error rate to 5.7~8.1 times and increases the speed to 2.5 times. All the related source codes and datasets are available at Github.
Suppose that a solution $widetilde{mathbf{x}}$ to an underdetermined linear system $mathbf{b} = mathbf{A} mathbf{x}$ is given. $widetilde{mathbf{x}}$ is approximately sparse meaning that it has a few large components compared to other small entries. However, the total number of nonzero components of $widetilde{mathbf{x}}$ is large enough to violate any condition for the uniqueness of the sparsest solution. On the other hand, if only the dominant components are considered, then it will satisfy the uniqueness conditions. One intuitively expects that $widetilde{mathbf{x}}$ should not be far from the true sparse solution $mathbf{x}_0$. We show that this intuition is the case by providing an upper bound on $| widetilde{mathbf{x}} - mathbf{x}_0|$ which is a function of the magnitudes of small components of $widetilde{mathbf{x}}$ but independent from $mathbf{x}_0$. This result is extended to the case that $mathbf{b}$ is perturbed by noise. Additionally, we generalize the upper bounds to the low-rank matrix recovery problem.
We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain t he first linear time-approximation schemes for a number of well-studied fundamental problems concerning clustering of binary vectors and low-rank approximation of binary matrices. Among the problems solvable by our approach are textsc{Low GF(2)-Rank Approximation}, textsc{Low Boolean-Rank Approximation}, and vario
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا