ﻻ يوجد ملخص باللغة العربية
We present a crowdsourcing workflow to collect image annotations for visually similar synthetic categories without requiring experts. In animals, there is a direct link between taxonomy and visual similarity: e.g. a collie (type of dog) looks more similar to other collies (e.g. smooth collie) than a greyhound (another type of dog). However, in synthetic categories such as cars, objects with similar taxonomy can have very different appearance: e.g. a 2011 Ford F-150 Supercrew-HD looks the same as a 2011 Ford F-150 Supercrew-LL but very different from a 2011 Ford F-150 Supercrew-SVT. We introduce a graph based crowdsourcing algorithm to automatically group visually indistinguishable objects together. Using our workflow, we label 712,430 images by ~1,000 Amazon Mechanical Turk workers; resulting in the largest fine-grained visual dataset reported to date with 2,657 categories of cars annotated at 1/20th the cost of hiring experts.
Large repositories of products, patents and scientific papers offer an opportunity for building systems that scour millions of ideas and help users discover inspirations. However, idea descriptions are typically in the form of unstructured text, lack
The popularity of racket sports (e.g., tennis and table tennis) leads to high demands for data analysis, such as notational analysis, on player performance. While sports videos offer many benefits for such analysis, retrieving accurate information fr
Existing uncertainty modeling approaches try to detect an out-of-distribution point from the in-distribution dataset. We extend this argument to detect finer-grained uncertainty that distinguishes between (a). certain points, (b). uncertain points bu
The interpretation of data is fundamental to machine learning. This paper investigates practices of image data annotation as performed in industrial contexts. We define data annotation as a sense-making practice, where annotators assign meaning to da
Compressed sensing (CS) leverages the sparsity prior to provide the foundation for fast magnetic resonance imaging (fastMRI). However, iterative solvers for ill-posed problems hinder their adaption to time-critical applications. Moreover, such a prio