ﻻ يوجد ملخص باللغة العربية
We prove Neharis theorem for integral Hankel and Toeplitz operators on simple convex polytopes in several variables. A special case of the theorem, generalizing the boundedness criterion of the Hankel and Toeplitz operators on the Paley-Wiener space, reads as follows. Let $Xi = (0,1)^d$ be a $d$-dimensional cube, and for a distribution $f$ on $2Xi$, consider the Hankel operator $$Gamma_f (g)(x)=int_{Xi} f(x+y) g(y) , dy, quad x inXi.$$ Then $Gamma_f$ extends to a bounded operator on $L^2(Xi)$ if and only if there is a bounded function $b$ on $mathbb{R}^d$ whose Fourier transform coincides with $f$ on $2Xi$. This special case has an immediate application in matrix extension theory: every finite multi-level block Toeplitz matrix can be boundedly extended to an infinite multi-level block Toeplitz matrix. In particular, block Toeplitz operators with blocks which are themselves Toeplitz, can be extended to bounded infinite block Toeplitz operators with Toeplitz blocks.
In this paper, we investigate the boundedness of Toeplitz product $T_{f}T_{g}$ and Hankel product $H_{f}^{*} H_{g}$ on Fock-Sobolev space for two polynomials $f$ and $g$ in $z,overline{z}inmathbb{C}^{n}$. As a result, the boundedness of Toeplitz oper
We study the asymptotics in n for n-dimensional Toeplitz determinants whose symbols possess Fisher-Hartwig singularities on a smooth background. We prove the general non-degenerate asymptotic behavior as conjectured by Basor and Tracy. We also obtain
We obtain asymptotics for Toeplitz, Hankel, and Toeplitz+Hankel determinants whose symbols possess Fisher-Hartwig singularities. Details of the proofs will be presented in another publication.
For $-1<alpha<infty$, let $omega_alpha(z)=(1+alpha)(1-|z|^2)^alpha$ be the standard weight on the unit disk. In this note, we provide descriptions of the boundedness and compactness for the Toeplitz operators $T_{mu,beta}$ between distinct weighted B
Suppose that $phi$ and $psi$ are smooth complex-valued functions on the circle that are invertible, have winding number zero with respect to the origin, and have meromorphic extensions to an open neighborhood of the closed unit disk. Let $T_phi$ and