ﻻ يوجد ملخص باللغة العربية
Through a direct comparison of specific heat and magneto-resistance we critically asses the nature of superconducting fluctuations in the same nano-gram crystal of SmFeAs(O, F). We show that although the superconducting fluctuation contribution to conductivity scales well within the 2D-LLL scheme its predictions contrast the inherently 3D nature of SmFeAs(O, F) in the vicinity T_{c}. Furthermore the transition seen in specific heat cannot be satisfactory described either by the LLL or the XY scaling. Additionally we have validated, through comparing Hc2 values obtained from the entropy conservation construction (Hab=-19.5 T/K and Hab=-2.9 T/K), the analysis of fluctuation contribution to conductivity as a reasonable method for estimating the Hc2 slope.
The upper and lower critical fields have been deduced from specific heat and Hall probe magnetization measurements in non-optimally doped NdFeAs(O,F) single crystals ($T_c sim 32-35$K). The anisoptropy of the penetration depth ($Gamma_lambda$) is tem
We present measurements of the resistivity and the upper critical field H_c2 of Nd(O_0.7F_0.3)FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H_c2 is comparable to ~100
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of stat
Hall effect and magnetoresistance have been measured on single crystals of $NdFeAsO_{1-x}F_{x}$ with x = 0 ($T_c$ = 0 $ $K) and x = 0.18 ($T_c$ = 50 $ $K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature depe
The specific heat $C(T)$ of new iron-based high-$T_c$ superconductor SmO$_{1-x}$F$_x$FeAs ($0 leq x leq 0.2$) was systematically studied. For undoped $x$ = 0 sample, a specific heat jump was observed at 130 K. This is attributed to the structural or