ﻻ يوجد ملخص باللغة العربية
Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.
We present three new quantum algorithms in the quantum query model for textsc{graph-collision} problem: begin{itemize} item an algorithm based on tree decomposition that uses $Oleft(sqrt{n}t^{sfrac{1}{6}}right)$ queries where $t$ is the treewidth of
I offer a case that quantum query complexity still has loads of enticing and fundamental open problems -- from relativized QMA versus QCMA and BQP versus IP, to time/space tradeoffs for collision and element distinctness, to polynomial degree versus
Production and inventory planning have become crucial and challenging in nowadays competitive industrial and commercial sectors, especially when multiple plants or warehouses are involved. In this context, this paper addresses the complexity of uncap
A directed odd cycle transversal of a directed graph (digraph) $D$ is a vertex set $S$ that intersects every odd directed cycle of $D$. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph $D$ and an integer $k$. The
The elimination distance to some target graph property P is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the pro