ترغب بنشر مسار تعليمي؟ اضغط هنا

SPIRou Input Catalog: Activity, Rotation and Magnetic Field of Cool Dwarfs

199   0   0.0 ( 0 )
 نشر من قبل Claire Moutou
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on optical high-resolution spectra obtained with CFHT/ESPaDOnS, we present new measurements of activity and magnetic field proxies of 442 low-mass K5-M7 dwarfs. The objects were analysed as potential targets to search for planetary-mass companions with the new spectropolarimeter and high-precision velocimeter, SPIRou. We have analysed their high-resolution spectra in an homogeneous way: circular polarisation, chromospheric features, and Zeeman broadening of the FeH infrared line. The complex relationship between these activity indicators is analysed: while no strong connection is found between the large-scale and small-scale magnetic fields, the latter relates with the non-thermal flux originating in the chromosphere. We then examine the relationship between various activity diagnostics and the optical radial-velocity jitter available in the literature, especially for planet host stars. We use this to derive for all stars an activity merit function (higher for quieter stars) with the goal of identifying the most favorable stars where the radial-velocity jitter is low enough for planet searches. We find that the main contributors to the RV jitter are the large-scale magnetic field and the chromospheric non-thermal emission. In addition, three stars (GJ 1289, GJ 793, and GJ 251) have been followed along their rotation using the spectropolarimetric mode, and we derive their magnetic topology. These very slow rotators are good representatives of future SPIRou targets. They are compared to other stars where the magnetic topology is also known. The poloidal component of the magnetic field is predominent in all three stars.



قيم البحث

اقرأ أيضاً

71 - S.V.Jeffers 2018
CARMENES is a spectrograph for radial velocity surveys of M dwarfs with the aim of detecting Earth-mass planets orbiting in the habitable zones of their host stars. To ensure an optimal use of the CARMENES Guaranteed Time Observations, in this paper we investigate the correlation of activity and rotation for approximately 2200 M dwarfs, ranging in spectral type from M0.0 V to M9.0 V. We present new high-resolution spectroscopic observations with FEROS, CAFE, and HRS of approximately 500 M dwarfs. For each new observation, we determined its radial velocity and measured its Halpha activity index and its rotation velocity. Additionally, we have multiple observations of many stars to investigate if there are any radial velocity variations due to multiplicity. The results of our survey confirm that early-M dwarfs are Halpha inactive with low rotational velocities and that late-M dwarfs are Halpha active with very high rotational velocities. The results of this high-resolution analysis comprise the most extensive catalogue of rotation and activity in M dwarfs currently available.
57 - A. Valio , R. Estrela , Y. Netto 2017
Magnetic activity on stars manifests itself in the form of dark spots on the stellar surface, that cause modulation of a few percent in the light curve of the star as it rotates. When a planet eclipses its host star, it might cross in front of one of these spots creating a bump in the transit light curve. By modelling these spot signatures, it is possible to determine the physical properties of the spots such as size, temperature, and location. In turn, the monitoring of the spots longitude provides estimates of the stellar rotation and differential rotation. This technique was applied to the star Kepler-17, a solar--type star orbited by a hot Jupiter. The model yields the following spot characteristics: average radius of $49 pm 10$ Mm, temperatures of $5100 pm 300$ K, and surface area coverage of $6 pm 4$ %. The rotation period at the transit latitude, $-5^circ$, occulted by the planet was found to be $11.92 pm 0.05$ d, slightly smaller than the out--of--transit average period of $12.4 pm 0.1$ d. Adopting a solar like differential rotation, we estimated the differential rotation of Kepler-17 to be $DeltaOmega = 0.041 pm 0.005$ rd/d, which is close to the solar value of 0.050 rd/d, and a relative differential rotation of $DeltaOmega/Omega=8.0 pm 0.9$ %. Since Kepler-17 is much more active than our Sun, it appears that for this star larger rotation rate is more effective in the generation of magnetic fields than shear.
We describe the catalogs assembled and the algorithms used to populate the revised TESS Input Catalog (TIC), based on the incorporation of the Gaia second data release. We also describe a revised ranking system for prioritizing stars for 2-minute cad ence observations, and assemble a revised Candidate Target List (CTL) using that ranking. The TIC is available on the Mikulski Archive for Space Telescopes (MAST) server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL http://filtergraph.vanderbilt.edu/tess_ctl.
Studies using asteroseismic ages and rotation rates from star-spot rotation have indicated that standard age-rotation relations may break down roughly half-way through the main sequence lifetime, a phenomenon referred to as weakened magnetic braking. While rotation rates from spots can be difficult to determine for older, less active stars, rotational splitting of asteroseismic oscillation frequencies can provide rotation rates for both active and quiescent stars, and so can confirm whether this effect really takes place on the main sequence. We obtained asteroseismic rotation rates of 91 main sequence stars showing high signal-to-noise modes of oscillation. Using these new rotation rates, along with effective temperatures, metallicities and seismic masses and ages, we built a hierarchical Bayesian mixture model to determine whether the ensemble more closely agreed with a standard rotational evolution scenario, or one where weakened magnetic braking takes place. The weakened magnetic braking scenario was found to be 98.4% more likely for our stellar ensemble, adding to the growing body of evidence for this stage of stellar rotational evolution. This work represents the largest catalogue of seismic rotation on the main sequence to date, opening up possibilities for more detailed ensemble analysis of rotational evolution with Kepler.
Present and future high-precision radial-velocity spectrometers dedicated to the discovery of low-mass planets orbiting low-mass dwarfs need to focus on the best selected stars to make an efficient use of telescope time. In the framework of the prepa ration of the SPIRou Input Catalog, the CoolSnap program aims at screening M dwarfs in the solar neighborhood against binarity, rapid rotation, activity, ... To optimize the selection, the present paper describes the methods used to compute effective temperature, metallicity, projected rotation velocity of a large sample of 440 M dwarfs observed in the visible with the high-resolution spectro-polarimeter ESPaDOnS at CFHT. It also summarizes known and newly-discovered spectroscopic binaries, and stars known to belong to visual multiple systems. A calibration of the projected rotation velocity versus measured line widths for M dwarfs observed by the ESPaDOnS spectro-polarimeter is derived, and the resulting values are compared to equatorial rotation velocities deduced from rotation periods and radii. A comparison of the derived effective temperatures and metallicities with literature values is also conducted. Finally, the radial velocity uncertainty of each star in the sample is estimated, to narrow down the selection of stars to be included into the SPIRou Input Catalogue (SPIC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا