ﻻ يوجد ملخص باللغة العربية
Detection of templates (e.g., sources) embedded in low-number count Poisson noise is a common problem in astrophysics. Examples include source detection in X-ray images, gamma-rays, UV, neutrinos, and search for clusters of galaxies and stellar streams. However, the solutions in the X-ray-related literature are sub-optimal -- in some cases by considerable factors. Using the lemma of Neyman-Pearson we derive the optimal statistics for template detection in the presence of Poisson noise. We demonstrate that this method provides higher completeness, for a fixed false-alarm probability value, compared with filtering the image with the point-spread function (PSF). In turn, we find that filtering by the PSF is better than filtering the image using the Mexican-hat wavelet (used by wavedetect). For some background levels, our method improves the sensitivity of source detection by more than a factor of two over the popular Mexican-hat wavelet filtering. This filtering technique can also be used also for fast PSF photometry and flare detection, and it is efficient, as well as straight forward to implement. We provide an implementation in MATLAB.
The matched filter (MF) is widely used to detect signals hidden within the noise. If the noise is Gaussian, its performances are well-known and describable in an elegant analytical form. The treatment of non-Gaussian noises is often cumbersome as in
We report on the detection of source noise in the time domain at 162MHz with the Murchison Widefield Array. During the observation the flux of our target source Virgo A (M87) contributes only $sim$1% to the total power detected by any single antenna,
Context: The eROSITA X-ray telescope onboard the Spectrum-Roentgen-Gamma (SRG) satellite has started to observe new X-ray sources over the full sky at an unprecedented rate. Understanding the selection function of the source detection is important to
The detection reliability of weak signals is a critical issue in many astronomical contexts and may have severe consequences for determining number counts and luminosity functions, but also for optimising the use of telescope time in follow-up observ
Different forms of long gamma-ray bursts (GRBs) Luminosity Functions are considered on the basis of an explicit physical model. The inferred flux distributions are compared with the observed ones from two samples of GRBs, Swift and Fermi GBM. The bes