ﻻ يوجد ملخص باللغة العربية
To determine the 3D orientation and 3D location of objects in the surroundings of a camera mounted on a robot or mobile device, we developed two powerful algorithms in object detection and temporal tracking that are combined seamlessly for robotic perception and interaction as well as Augmented Reality (AR). A separate evaluation of, respectively, the object detection and the temporal tracker demonstrates the important stride in research as well as the impact on industrial robotic applications and AR. When evaluated on a standard dataset, the detector produced the highest f1-score with a large margin while the tracker generated the best accuracy at a very low latency of approximately 2 ms per frame with one CPU core: both algorithms outperforming the state of the art. When combined, we achieve a powerful framework that is robust to handle multiple instances of the same object under occlusion and clutter while attaining real-time performance. Aiming at stepping beyond the simple scenarios used by current systems, often constrained by having a single object in absence of clutter, averting to touch the object to prevent close-range partial occlusion, selecting brightly colored objects to easily segment them individually or assuming that the object has simple geometric structure, we demonstrate the capacity to handle challenging cases under clutter, partial occlusion and varying lighting conditions with objects of different shapes and sizes.
6D pose estimation in space poses unique challenges that are not commonly encountered in the terrestrial setting. One of the most striking differences is the lack of atmospheric scattering, allowing objects to be visible from a great distance while c
We propose a benchmark for 6D pose estimation of a rigid object from a single RGB-D input image. The training data consists of a texture-mapped 3D object model or images of the object in known 6D poses. The benchmark comprises of: i) eight datasets i
We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image, without external pose-annotated real-world training data. While previous works exploit visual cues in RGB(D) images, our method makes inferenc
Depth cameras allow to set up reliable solutions for people monitoring and behavior understanding, especially when unstable or poor illumination conditions make unusable common RGB sensors. Therefore, we propose a complete framework for the estimatio
6D object pose estimation is a fundamental problem in computer vision. Convolutional Neural Networks (CNNs) have recently proven to be capable of predicting reliable 6D pose estimates even from monocular images. Nonetheless, CNNs are identified as be