ﻻ يوجد ملخص باللغة العربية
Spin-orbit torque (SOT) refers to the excitation of magnetization dynamics via spin-orbit coupling under the application of a charged current. In this work, we introduce a simple and intuitive description of the SOT in terms of spin force. In Rashba spin-orbit coupling system, the damping-like SOT can be expressed as ${mathbf T}^mathrm{so}={mathbf R}_ctimes {mathbf F}^{{mathrm {so}}}$, in analogy to the classical torque-force relation, where $R_c$ is the effective radius characterizing the Rashba splitting in the momentum space. As a consequence, the magnetic energy is transferred to the conduction electrons, which dissipates through Joule heating at a rate of $({mathbf j}_ecdot {mathbf F}^{mathrm {so}})$, with $j_e$ being the applied current. Finally, we propose an experimental verification of our findings via measurement of the anisotropic magnetoresistance effect.
We study the generation of propagating spin waves in Ta/CoFeB waveguides by spin-orbit torque antennas and compare them to conventional inductive antennas. The spin-orbit torque was generated by a transverse microwave current across the magnetic wave
Spin-dependent transport phenomena due to relativistic spin-orbit coupling and broken space-inversion symmetry are often difficult to interpret microscopically, in particular when occurring at surfaces or interfaces. Here we present a theoretical and
Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven FMR technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, were analysed to determine the symmetries and r
Spin torque and spin Hall effect nanooscillators generate high intensity spin wave auto oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices requ
Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extende