Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures


الملخص بالإنكليزية

We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of NiMnSb in the scattering region. We investigate the dependence of the transmission function computed within the local spin density approximation (LSDA) of the density functional theory (DFT) on the number of half-metallic units in the scattering region. For a single NiMnSb unit the transmission function displays a spin polarization of around 50 % in a window of 1 eV centered around the Fermi level. By increasing the number of layers an almost complete spin polarization of the transmission is obtained in the same energy window. Supplementing the DFT-LSDA calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin-polarization of the conduction electron transmission, which suggests the localized nature of the hybridized interface and many-body induced states.

تحميل البحث