ﻻ يوجد ملخص باللغة العربية
We report the effects of Ce substitution on structural, electronic, and magnetic properties of layered bismuth-chalcogenide La1-xCexOBiSSe (x = 0-0.9), which are newly obtained in this study. Metallic conductivity was observed for x > 0.1 because of electron carriers induced by mixed valence of Ce ions, as revealed by bond valence sum calculation and magnetization measurements. Zero resistivity and clear diamagnetic susceptibility were obtained for x = 0.2-0.6, indicating the emergence of bulk superconductivity in these compounds. Dome-shaped superconductivity phase diagram with the highest transition temperature (Tc) of 3.1 K, which is slightly lower than that of F-doped LaOBiSSe (Tc = 3.7 K), was established. The present study clearly shows that the mixed valence of Ce ions can be utilized as an alternative approach for electron-doping in layered bismuth-chalcogenides to induce superconductivity.
We report a strategy to induce superconductivity in the BiS$_2$-based compound LaOBiS$_2$. Instead of substituting F for O, we increase the charge-carrier density (electron dope) via substitution of tetravalent Th$^{+4}$, Hf$^{+4}$, Zr$^{+4}$, and Ti
We predict by first principles calculations that the recently prepared borophene is a pristine two-dimensional (2D) monolayer superconductor, in which the superconductivity can be significantly enhanced by strain and charge carrier doping. The intrin
We have studied the Ce valence as a function of pressure in CeRhIn5 at 300 K and at 22 K using x-ray absorption spectroscopy in partial fluorescent yield mode. At room temperature, we found no detectable change in Ce valence greater than 0.01 up to a
Chemical doping has recently become a very important strategy to induce superconductivity especially in complex compounds. Distinguished examples include Ba-doped La$_2$CuO$_4$ (the first high temperature superconductor), K-doped BaBiO$_3$, K-doped C
A series of 122 phase BaFe$_{2-x}$Ni$_x$As$_2$ ($x$ = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature