ﻻ يوجد ملخص باللغة العربية
We initiate the study of Selberg zeta functions $Z_{Gamma,chi}$ for geometrically finite Fuchsian groups $Gamma$ and finite-dimensional representations $chi$ with non-expanding cusp monodromy. We show that for all choices of $(Gamma,chi)$, the Selberg zeta function $Z_{Gamma,chi}$ converges on some half-plane in $mathbb{C}$. In addition, under the assumption that $Gamma$ admits a strict transfer operator approach, we show that $Z_{Gamma,chi}$ extends meromorphically to all of $mathbb{C}$.
Let $Gamma$ be a geometrically finite Fuchsian group and suppose that $chicolonGammatomathrm{GL}(V)$ is a finite-dimensional representation with non-expanding cusp monodromy. We show that the parabolic Eisenstein series for $Gamma$ with twist $chi$ c
Over the last few years Pohl (partly jointly with coauthors) developed dual `slow/fast transfer operator approaches to automorphic functions, resonances, and Selberg zeta functions for a certain class of hyperbolic surfaces $Gammabackslashmathbb{H}$
We give an explicit formula for the second variation of the logarithm of the Selberg zeta function, $Z(s)$, on Teichmuller space. We then use this formula to determine the asymptotic behavior as $text{Re} (s) to infty$ of the second variation. As a c
We study elements of the spectral theory of compact hyperbolic orbifolds $Gamma backslash mathbb{H}^{n}$. We establish a version of the Selberg trace formula for non-unitary representations of $Gamma$ and prove that the associated Selberg zeta functi
The principal aim in this paper is to employ a recently developed unified approach to the computation of traces of resolvents and $zeta$-functions to efficiently compute values of spectral $zeta$-functions at positive integers associated to regular (