ﻻ يوجد ملخص باللغة العربية
The streaming instability is often invoked as solution to the fragmentation and drift barriers in planetesimal formation, catalyzing the aggregation of dust on kyr timescales to grow km-sized cores. However there remains a lack of consensus on the physical mechanism(s) responsible for initiating it. One potential avenue is disc photoevaporation, wherein the preferential removal of relatively dust-free gas increases the disc metallicity. Late in the disc lifetime, photoevaporation dominates viscous accretion, creating a gradient in the depleted gas surface density near the location of the gap. This induces a local pressure maximum that collects drifting dust particles, which may then become susceptible to the streaming instability. Using a one-dimensional viscous evolution model of a disc subject to internal X-ray photoevaporation, we explore the efficacy of this process to build planetestimals. Over a range of parameters we find that the amount of dust mass converted into planetesimals is often < 1 M_Earth and at most a few M_Earth spread across tens of AU. We conclude that photoevaporation may at best be relevant for the formation of debris discs, rather than a common mechanism for the formation of planetary cores. Our results are in contrast to a recent, similar investigation that considered an FUV-driven photoevaporation model and reported the formation of tens of M_Earth at large (> 100 AU) disc radii. The discrepancies are primarily a consequence of the different photoevaporation profiles assumed. Until observations more tightly constrain photoevaporation models, the relevance of this process to the formation of planets remains uncertain.
Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary
A critical step toward the emergence of planets in a protoplanetary disk consists in accretion of planetesimals, bodies 1-1000 km in size, from smaller disk constituents. This process is poorly understood partly because we lack good observational con
Comets and small planetesimals are believed to contain primordial building blocks in the form of millimeter to centimeter sized pebbles. One of the viable growing mechanisms to form these small bodies is through the streaming instability (SI) in whic
The streaming instability is a leading candidate mechanism to explain the formation of planetesimals. Yet, the role of this instability in the driving of turbulence in protoplanetary disks, given its fundamental nature as a linear hydrodynamical inst
Damping of the previously discovered resonant drag instability (RDI) of dust streaming in protoplanetary disc is studied using the local approach to dynamics of gas-dust perturbations in the limit of the small dust fraction. Turbulence in a disc is r