ﻻ يوجد ملخص باللغة العربية
We measure the surface of CH$_3$NH$_3$PbI$_3$ single crystals by making use of two photon photoemission spectroscopy. Our method monitors the electronic distribution of photoexcited electrons, explicitly discriminating the initial thermalization from slower dynamical processes. The reported results disclose the fast dissipation channels of hot carriers (0.25 ps), set a upper bound to the surface induced recombination velocity ($<4000$ cm/s) and reveal the dramatic effect of shallow traps on the electrons dynamics. The picosecond localization of excited electrons in degraded CH$_3$NH$_3$PbI$_3$ samples is consistent with the progressive reduction of photoconversion efficiency in operating devices. Minimizing the density of shallow traps and solving the aging problem may boost the macroscopic efficiency of solar cells to the theoretical limit.
Hybrid halide perovskites exhibit nearly 20% power conversion efficiency, but the origin of their high efficiency is still unknown. Here, we compute the shift current, a dominant mechanism of bulk photovoltaic (PV) effect for ferroelectric photovolta
Instability of perovskite photovoltaics is still a topic which is currently under intense debate, especially the role of water environment. Unraveling the mechanism of this instability is urgent to enable practical application of perovskite solar cel
We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH$_3$NH$_3$PbI$_3$. For crystal structures which lack inversion symmetry, the calculated photocurrent density is about $10^{-9}$ A/W, comparable to t
The instability of organometal halide perovskites when in contact with water is a serious challenge to their feasibility as solar cell materials. Although studies of moisture exposure have been conducted, an atomistic understanding of the degradation
Cuprous oxide has been conceived as a potential alternative to traditional organic hole transport layers in hybrid halide perovskite-based solar cells. Device simulations predict record efficiencies using this semiconductor, but experimental results