ﻻ يوجد ملخص باللغة العربية
The solar metallicity issue is a long-lasting problem of astrophysics, impacting multi- ple fields and still subject to debate and uncertainties. While spectroscopy has mostly been used to determine the solar heavy elements abundance, helioseismologists at- tempted providing a seismic determination of the metallicity in the solar convective enveloppe. However, the puzzle remains since two independent groups prodived two radically different values for this crucial astrophysical parameter. We aim at provid- ing an independent seismic measurement of the solar metallicity in the convective enveloppe. Our main goal is to help provide new information to break the current stalemate amongst seismic determinations of the solar heavy element abundance. We start by presenting the kernels, the inversion technique and the target function of the inversion we have developed. We then test our approach in multiple hare-and-hounds exercises to assess its reliability and accuracy. We then apply our technique to solar data using calibrated solar models and determine an interval of seismic measurements for the solar metallicity. We show that our inversion can indeed be used to estimate the solar metallicity thanks to our hare-and-hounds exercises. However, we also show that further dependencies in the physical ingredients of solar models lead to a low accuracy. Nevertheless, using various physical ingredients for our solar models, we determine metallicity values between 0.008 and 0.014.
The Sun is the most constrained and well-studied of all stars. As a consequence, the physical ingredients entering solar models are used as a reference to study all other stars observed in the Universe. However, our understanding of the solar structu
For a solar-like star, the surface rotation evolves with time, allowing in principle to estimate the age of a star from its surface rotation period. Here we are interested in measuring surface rotation periods of solar-like stars observed by the NASA
Observations of the Sun in the visible spectral range belong to standard measurements obtained by instruments both on the ground and in the space. Nowadays, both nearly continuous full-disc observations with medium resolution and dedicated campaigns
Finding solar-analog stars with fundamental properties as close as possible to the Sun and studying the characteristics of their surface magnetic activity is a very promising way to understand the solar variability and its associated dynamo process.