Nuclear spin-lattice (1/T1) and spin-spin (1/T2) relaxation rates of the cation sites of a quantum spin-liquid candidate b-EtMe3Sb[Pd(dmit)2]2 and its deuterated sample are presented. The enhanced 1/T1 of 1H and 2D are well analyzed considering the rotations of methyl- and ethyl-groups of the cation with the activation energies of 200K and 1200K respectively. The 1/T1 and 1/T2 at the Sb site that is located on the 2-fold rotation axis remain active down to the lowest temperature with an algebraic temperature dependence of the correlation time as has been observed in the ac response of the dielectric constants.