ترغب بنشر مسار تعليمي؟ اضغط هنا

Weather impacts expressed sentiment

415   0   0.0 ( 0 )
 نشر من قبل Nick Obradovich
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

We conduct the largest ever investigation into the relationship between meteorological conditions and the sentiment of human expressions. To do this, we employ over three and a half billion social media posts from tens of millions of individuals from both Facebook and Twitter between 2009 and 2016. We find that cold temperatures, hot temperatures, precipitation, narrower daily temperature ranges, humidity, and cloud cover are all associated with worsened expressions of sentiment, even when excluding weather-related posts. We compare the magnitude of our estimates with the effect sizes associated with notable historical events occurring within our data.



قيم البحث

اقرأ أيضاً

Spatial prediction of weather-elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground-stations. None of these data provide information at a more granular or hyper-local re solution. On the other hand, crowdsourced weather data, which are captured by sensors installed on mobile devices and gathered by weather-related mobile apps like WeatherSignal and AccuWeather, can serve as potential data sources for analyzing environmental processes at a hyper-local resolution. However, due to the low quality of the sensors and the non-laboratory environment, the quality of the observations in crowdsourced data is compromised. This paper describes methods to improve hyper-local spatial prediction using this varying-quality noisy crowdsourced information. We introduce a reliability metric, namely Veracity Score (VS), to assess the quality of the crowdsourced observations using a coarser, but high-quality, reference data. A VS-based methodology to analyze noisy spatial data is proposed and evaluated through extensive simulations. The merits of the proposed approach are illustrated through case studies analyzing crowdsourced daily average ambient temperature readings for one day in the contiguous United States.
Insurance industry is one of the most vulnerable sectors to climate change. Assessment of future number of claims and incurred losses is critical for disaster preparedness and risk management. In this project, we study the effect of precipitation on a joint dynamics of weather-induced home insurance claims and losses. We discuss utility and limitations of such machine learning procedures as Support Vector Machines and Artificial Neural Networks, in forecasting future claim dynamics and evaluating associated uncertainties. We illustrate our approach by application to attribution analysis and forecasting of weather-induced home insurance claims in a middle-sized city in the Canadian Prairies.
We examine crime patterns in Santa Monica, California before and after passage of Proposition 47, a 2014 initiative that reclassified some non-violent felonies to misdemeanors. We also study how the 2016 opening of four new light rail stations, and h ow more community-based policing starting in late 2018, impacted crime. A series of statistical analyses are performed on reclassified (larceny, fraud, possession of narcotics, forgery, receiving/possessing stolen property) and non-reclassified crimes by probing publicly available databases from 2006 to 2019. We compare data before and after passage of Proposition 47, city-wide and within eight neighborhoods. Similar analyses are conducted within a 450 meter radius of the new transit stations. Reports of monthly reclassified crimes increased city-wide by approximately 15% after enactment of Proposition 47, with a significant drop observed in late 2018. Downtown exhibited the largest overall surge. The reported incidence of larceny intensified throughout the city. Two new train stations, including Downtown, reported significant crime increases in their vicinity after service began. While the number of reported reclassified crimes increased after passage of Proposition 47, those not affected by the new law decreased or stayed constant, suggesting that Proposition 47 strongly impacted crime in Santa Monica. Reported crimes decreased in late 2018 concurrent with the adoption of new policing measures that enhanced outreach and patrolling. These findings may be relevant to law enforcement and policy-makers. Follow-up studies needed to confirm long-term trends may be affected by the COVID-19 pandemic that drastically changed societal conditions.
Short term load forecasts will play a key role in the implementation of smart electricity grids. They are required to optimise a wide range of potential network solutions on the low voltage (LV) grid, including integrating low carbon technologies (su ch as photovoltaics) and utilising battery storage devices. Despite the need for accurate LV level load forecasts, previous studies have mostly focused on forecasting at the individual household or building level using data from smart meters. In this study we provide detailed analysis of a variety of methods in terms of both point and probabilistic forecasting accuracy using data from 100 real LV feeders. Moreover, we investigate the effect of temperature (both actual and forecasts) on the accuracy of load forecasts. We present some important results on the drivers of LV forecasting accuracy that are crucial for the management of LV networks, along with an empirical comparison of forecast measures.
Aspect-level sentiment classification aims at identifying the sentiment polarity of specific target in its context. Previous approaches have realized the importance of targets in sentiment classification and developed various methods with the goal of precisely modeling their contexts via generating target-specific representations. However, these studies always ignore the separate modeling of targets. In this paper, we argue that both targets and contexts deserve special treatment and need to be learned their own representations via interactive learning. Then, we propose the interactive attention networks (IAN) to interactively learn attentions in the contexts and targets, and generate the representations for targets and contexts separately. With this design, the IAN model can well represent a target and its collocative context, which is helpful to sentiment classification. Experimental results on SemEval 2014 Datasets demonstrate the effectiveness of our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا