ترغب بنشر مسار تعليمي؟ اضغط هنا

Logical paradoxes in quantum computation

88   0   0.0 ( 0 )
 نشر من قبل Nadish de Silva
 تاريخ النشر 2017
والبحث باللغة English
 تأليف Nadish de Silva




اسأل ChatGPT حول البحث

While quantum computers are expected to yield considerable advantages over classical devices, the precise features of quantum theory enabling these advantages remain unclear. Contextuality--the denial of a notion of classical physical reality--has emerged as a promising hypothesis. Magic states are quantum resources critical for practically achieving universal quantum computation. They exhibit the standard form of contextuality that is known to enable probabilistic advantages in a variety of computational and communicational tasks. Strong contextuality is an extremal form of contextuality describing systems that exhibit logically paradoxical behaviour. Here, we consider special magic states that deterministically enable quantum computation. After introducing number-theoretic techniques for constructing exotic quantum paradoxes, we present large classes of strongly contextual magic states that enable deterministic implementation of gates from the Clifford hierarchy. These surprising discoveries bolster a refinement of the resource theory of contextuality that emphasises the computational power of logical paradoxes.



قيم البحث

اقرأ أيضاً

170 - Matthew F. Pusey 2015
If a quantum system is prepared and later post-selected in certain states, paradoxical predictions for intermediate measurements can be obtained. This is the case both when the intermediate measurement is strong, i.e. a projective measurement with Lu ders-von Neumann update rule, or with weak measurements where they show up in anomalous weak values. Leifer and Spekkens [quant-ph/0412178] identified a striking class of such paradoxes, known as logical pre- and post-selection paradoxes, and showed that they are indirectly connected with contextuality. By analysing the measurement-disturbance required in models of these phenomena, we find that the strong measurement version of logical pre- and post-selection paradoxes actually constitute a direct manifestation of quantum contextuality. The proof hinges on under-appreciated features of the paradoxes. In particular, we show by example that it is not possible to prove contextuality without Luders-von Neumann updates for the intermediate measurements, nonorthogonal pre- and post-selection, and 0/1 probabilities for the intermediate measurements. Since one of us has recently shown that anomalous weak values are also a direct manifestation of contextuality [arXiv:1409.1535], we now know that this is true for both realizations of logical pre- and post-selection paradoxes.
A new approach to efficient quantum computation with probabilistic gates is proposed and analyzed in both a local and non-local setting. It combines heralded gates previously studied for atom or atom-like qubits with logical encoding from linear opti cal quantum computation in order to perform high fidelity quantum gates across a quantum network. The error-detecting properties of the heralded operations ensure high fidelity while the encoding makes it possible to correct for failed attempts such that deterministic and high-quality gates can be achieved. Importantly, this is robust to photon loss, which is typically the main obstacle to photonic based quantum information processing. Overall this approach opens a novel path towards quantum networks with atomic nodes and photonic links.
289 - Derek Dreyer 2011
Appel and McAllesters step-indexed logical relations have proven to be a simple and effective technique for reasoning about programs in languages with semantically interesting types, such as general recursive types and general reference types. Howeve r, proofs using step-indexed models typically involve tedious, error-prone, and proof-obscuring step-index arithmetic, so it is important to develop clean, high-level, equational proof principles that avoid mention of step indices. In this paper, we show how to reason about binary step-indexed logical relations in an abstract and elegant way. Specifically, we define a logic LSLR, which is inspired by Plotkin and Abadis logic for parametricity, but also supports recursively defined relations by means of the modal later operator from Appel, Melli`es, Richards, and Vouillons very modal model paper. We encode in LSLR a logical relation for reasoning relationally about programs in call-by-value System F extended with general recursive types. Using this logical relation, we derive a set of useful rules with which we can prove contextual equivalence and approximation results without counting steps.
Stone-type dualities provide a powerful mathematical framework for studying properties of logical systems. They have recently been fruitfully explored in understanding minimisation of various types of automata. In Bezhanishvili et al. (2012), a dual equivalence between a category of coalgebras and a category of algebras was used to explain minimisation. The algebraic semantics is dual to a coalgebraic semantics in which logical equivalence coincides with trace equivalence. It follows that maximal quotients of coalgebras correspond to minimal subobjects of algebras. Examples include partially observable deterministic finite automata, linear weighted automata viewed as coalgebras over finite-dimensional vector spaces, and belief automata, which are coalgebras on compact Hausdorff spaces. In Bonchi et al. (2014), Brzozowskis double-reversal minimisation algorithm for deterministic finite automata was described categorically and its correctness explained via the duality between reachability and observability. This work includes generalisations of Brzozowskis algorithm to Moore and weighted automata over commutative semirings. In this paper we propose a general categorical framework within which such minimisation algorithms can be understood. The goal is to provide a unifying perspective based on duality. Our framework consists of a stack of three interconnected adjunctions: a base dual adjunction that can be lifted to a dual adjunction between coalgebras and algebras and also to a dual adjunction between automata. The approach provides an abstract understanding of reachability and observability. We illustrate the general framework on range of concrete examples, including deterministic Kripke frames, weighted automata, topological automata (belief automata), and alternating automata.
We survey several problems related to logical aspects of quantum structures. In particular, we consider problems related to completions, decidability and axiomatizability, and embedding problems. The historical development is described, as well as recent progress and some suggested paths forward.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا