ﻻ يوجد ملخص باللغة العربية
We report on Hall field-induced resistance oscillations (HIRO) in a 60 nm-wide GaAs/AlGaAs quantum well with an emph{in situ} grown back gate, which allows tuning the carrier density $n$. At low $n$, when all electrons are confined to the lowest subband (SB1), the HIRO frequency, proportional to the product of the cyclotron diameter and the Hall field, scales with $n^{-1/2}$, as expected. Remarkably, population of the second subband (SB2) significantly enhances HIRO, while their frequency now scales as $n^{-1}$. We demonstrate that in this two-subband regime HIRO still originate solely from backscattering of SB1 electrons. The unusual density dependence occurs because the population of SB2 steadily increases, while that of SB1 remains essentially unchanged. The enhancement of HIRO manifests an unexpected, step-like increase of the quantum lifetime of SB1 electrons, which reaches a record value of 52 ps in the two-subband regime.
We report on microwave-induced resistance oscillations (MIROs) in a tunable-density 30-nm-wide GaAs/AlGaAs quantum well. We find that the MIRO amplitude increases dramatically with carrier density. Our analysis shows that the anticipated increase in
The magnetotransport of highly mobile 2D electrons in wide GaAs single quantum wells with three populated subbands placed in titled magnetic fields is studied. The bottoms of the lower two subbands have nearly the same energy while the bottom of the
We report on the stability of the quantum Hall plateau in wide Hall bars made from a chemically gated graphene film grown on SiC. The $ u=2$ quantized plateau appears from fields $B simeq 5$ T and persists up to $B simeq 80$ T. At high current densit
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right
We develop a systematic theory of microwave-induced oscillations in magnetoresistivity of a 2D electron gas in the vicinity of fractional harmonics of the cyclotron resonance, observed in recent experiments. We show that in the limit of well-separate