ﻻ يوجد ملخص باللغة العربية
A well-known result says that the Euclidean unit ball is the unique fixed point of the polarity operator. This result implies that if, in $mathbb{R}^n$, the unit ball of some norm is equal to the unit ball of the dual norm, then the norm must be Euclidean. Motivated by these results and by relatively recent results in convex analysis and convex geometry regarding various properties of order reversing operators, we consider, in a real Hilbert space setting, a more general fixed point equation in which the polarity operator is composed with a continuous invertible linear operator. We show that if the linear operator is positive definite, then the considered equation is uniquely solvable by an ellipsoid. Otherwise, the equation can have several (possibly infinitely many) solutions or no solution at all. Our analysis yields a few by-products of possible independent interest, among them results related to coercive bilinear forms (essentially a quantitative convex analytic converse to the celebrated Lax-Milgram theorem from partial differential equations) and a characterization of real Hilbertian spaces.
Conjugation, or Legendre transformation, is a basic tool in convex analysis, rational mechanics, economics and optimization. It maps a function on a linear topological space into another one, defined in the dual of the linear space by coupling these
We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and $C^1$ functions. This way we prove more directly a result by Lee and Naor and we generalize the $C^1$ extension theorem by Whitney to Banach spaces.
A recent result characterizes the fully order reversing operators acting on the class of lower semicontinuous proper convex functions in a real Banach space as certain linear deformations of the Legendre-Fenchel transform. Motivated by the Hilbert sp
In this article we introduce a new class of Rolewicz-type operators in l_p, $1 le p < infty$. We exhibit a collection F of cardinality continuum of operators of this type which are chaotic and remain so under almost all finite linear combinations, pr
Any maximal monotone operator can be characterized by a convex function. The family of such convex functions is invariant under a transformation connected with the Fenchel-Legendre conjugation. We prove that there exist a convex representation of the