ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare

188   0   0.0 ( 0 )
 نشر من قبل Ying Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph (IRIS). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si IV 1402.77 A line exhibits significantly broadened line wings extending to 200 km/s but an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe XXI 1354.08 A line shows blueshifts and the cool Si IV 1402.77 A, C II 1335.71 A, and Mg II 2803.52 A lines show evident redshifts up to a velocity of 80 km/s, which are consistent with the scenario of chromospheric evaporation/condensation.



قيم البحث

اقرأ أيضاً

67 - Y. Li , J. Qiu , D. W. Longcope 2016
We report evolution of an atypical X-shaped flare ribbon which provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 A images from th e Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the X (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggests the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.
We study spectroscopic observations of chromospheric evaporation mass flows in comparison to the energy input by electron beams derived from hard X-ray data for the white-light M2.5 flare of 2006 July 6. The event was captured in high cadence spectro scopic observing mode by SOHO/CDS combined with high-cadence imaging at various wavelengths in the visible, EUV and X-ray domain during the joint observing campaign JOP171. During the flare peak, we observe downflows in the He,{sc i} and O,{sc v} lines formed in the chromosphere and transition region, respectively, and simultaneous upflows in the hot coronal Si~{sc xii} line. The energy deposition rate by electron beams derived from RHESSI hard X-ray observations is suggestive of explosive chromospheric evaporation, consistent with the observed plasma motions. However, for a later distinct X-ray burst, where the site of the strongest energy deposition is exactly located on the CDS slit, the situation is intriguing. The O,{sc v} transition region line spectra show the evolution of double components, indicative of the superposition of a stationary plasma volume and upflowing plasma elements with high velocities (up to 280~km~s$^{-1}$) in single CDS pixels on the flare ribbon. However, the energy input by electrons during this period is too small to drive explosive chromospheric evaporation. These unexpected findings indicate that the flaring transition region is much more dynamic, complex, and fine-structured than is captured in single-loop hydrodynamic simulations.
Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays one of key roles in dynamics and energetics of solar flares, however, its mechanism is still unknown. In this paper we present a detailed analysis of spatially-r esolved multi-wavelength observations of chromospheric evaporation during an M 1.0 class solar flare (SOL2014-06-12T21:12) using data from the NASAs IRIS (Interface Region Imaging Spectrograph) and HMI/SDO (Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory) telescopes, and VIS/NST (Visible Imaging Spectrometer at New Solar Telescope) high-resolution observations, covering the temperature range from 10^4 K to 10^7 K. The results show that the averaged over the region Fe XXI blueshift of the hot evaporating plasma is delayed relative to the C II redshift of the relatively cold chromospheric plasma by about 1 min. The spatial distribution of the delays is not uniform across the region and can be as long as 2 min in several zones. Using vector magnetograms from HMI we reconstruct the magnetic field topology and the quasi-separatrix layer (QSL) and find that the blueshift delay regions as well as the H-alpha flare ribbons are connected to the region of magnetic polarity inversion line (PIL) and an expanding flux rope via a system of low-lying loop arcades with height < ~4.5 Mm. This allows us to propose an interpretation of the chromospheric evaporation based on the geometry of local magnetic fields, and the primary energy source associated with the PIL.
207 - Y. Li , X. Sun , M. D. Ding 2016
Solar flares are one of the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are pr obably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence for magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.
120 - D. W. Longcope 2014
Magnetic energy released in the corona by solar flares reaches the chromosphere where it drives characteristic upflows and downflows known as evaporation and condensation. These flows are studied here for the case where energy is transported to the c hromosphere by thermal conduction. An analytic model is used to develop relations by which the density and velocity of each flow can be predicted from coronal parameters including the flares energy flux $F$. These relations are explored and refined using a series of numerical investigations in which the transition region is represented by a simplified density jump. The maximum evaporation velocity, for example, is well approximated by $v_esimeq0.38(F/rho_{co,0})^{1/3}$, where $rho_{co,0}$ is the mass density of the pre-flare corona. This and the other relations are found to fit simulations using more realistic models of the transition region both performed in this work, and taken from a variety of previously published investigations. These relations offer a novel and efficient means of simulating coronal reconnection without neglecting entirely the effects of evaporation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا