ترغب بنشر مسار تعليمي؟ اضغط هنا

Buoyant AGN bubbles in the quasi-isothermal potential of NGC 1399

55   0   0.0 ( 0 )
 نشر من قبل Yuanyuan Su
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuanyuan Su




اسأل ChatGPT حول البحث

The Fornax Cluster is a low-mass cool-core galaxy cluster. We present a deep {sl Chandra} study of NGC 1399, the central dominant elliptical galaxy of Fornax. The cluster center harbors two symmetric X-ray cavities coincident with a pair of radio lobes fed by two collimated jets along a north-south axis. A temperature map reveals that the AGN outburst has created a channel filled with cooler gas out to a radius of 10 kpc. The cavities are surrounded by cool bright rims and filaments that may have been lifted from smaller radii by the buoyant bubbles. X-ray imaging suggests a potential ghost bubble of $gtrsim$ 5,kpc diameter to the northwest. We find that the amount of gas lifted by AGN bubbles is comparable to that which would otherwise cool, demonstrating that AGN driven outflow is effective in offsetting cooling in low-mass clusters. The cluster cooling time scale is $>30$ times longer than the dynamical time scale, which is consistent with the lack of cold molecular gas at the cluster center. The X-ray hydrostatic mass is consistent within 10% with the total mass derived from the optical data. The observed entropy profile rises linearly, following a steeper slope than that observed at the centers of massive clusters; gas shed by stars in NGC 1399 may be incorporated in the hot phase. However, it is far-fetched for supernova-driven outflow to produce and maintain the thermal distribution in NGC 1399 and it is in tension with the metal content in the hot gas.



قيم البحث

اقرأ أيضاً

Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees t hat a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the clusters core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number ${rm Fr}lesssim 1$. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. In particular, clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is $sim100-200{,rm km,s^{-1}}$ near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.
198 - J. Kataoka , M. Tahara , T. Totani 2015
In our previous works (Kataoka et al. 2013, Tahara et al. 2015), we found absorbed thermal X-ray plasma with kT ~ 0.3 keV observed ubiquitously near the edges of the Fermi bubbles and interpreted this emission as weakly shock-heated Galactic halo (GH ) gas. Here we present a systematic and uniform analysis of archival Suzaku (29 pointings; 6 newly presented) and Swift (68 pointings; 49 newly presented) data within Galactic longitudes |l| < 20 deg and latitude 5 deg < |b| < 60 deg, covering the whole extent of the Fermi bubbles. We show that the plasma temperature is constant at kT = 0.30+-0.07 keV, while the emission measure (EM) varies by an order of magnitude, increasing toward the Galactic center (i.e., low |b|) with enhancements at the north polar spur (NPS), SE-claw and NW-clump features. Moreover, the EM distribution of kT ~ 0.30 keV plasma is highly asymmetric in the northern and southern bubbles. Although the association of the X-ray emission with the bubbles is not conclusive, we compare the observed EM properties with simple models assuming (i) a filled halo without bubbles, whose gas density follows a hydrostatic isothermal model (King profile) and (ii) a bubble-in-halo in which two identical bubbles expand into the halo forming thick shells of swept halo gas. We argue that the EM profile in the north (b > 0 deg) favors (ii), whereas that of the south (b < 0 deg) is rather close to (i), but weak excess signature is clearly detected also in the south like NPS (South Polar Spur; SPS). Such an asymmetry, if due to the bubbles, cannot be fully understood only by the inclination of bubbles axis against the Galactic disk normal, thus suggesting asymmetric outflow due to different environmental/initial condition.
133 - E. Roediger 2006
Using a series of three-dimensional, hydrodynamic simulations on an adaptive grid, we have performed a systematic study on the effect of bubble-induced motions on metallicity profiles in clusters of galaxies. In particular, we have studied the depend ence on the bubble size and position, the recurrence times of the bubbles, the way these bubbles are inflated and the underlying cluster profile. We find that in hydrostatic cluster models, the resulting metal distribution is very elongated along the direction of the bubbles. Anisotropies in the cluster or ambient motions are needed if the metal distribution is to be spherical. In order to parametrise the metal transport by bubbles, we compute effective diffusion coefficients. The diffusion coefficients inferred from our simple experiments lie at values of around $sim 10^{29}$ cm$^2$s$^{-1}$ at a radius of 10 kpc. The runs modelled on the Perseus cluster yield diffusion coefficients that agree very well with those inferred from observations.
We present a wide field study of the Globular Clusters/Low Mass X-ray Binary (LMXB) connection in the giant elliptical NGC1399. The large FOV of the ACS/WFC, combined with the HST and Chandra high resolution, allow us to constrain the LMXB formation scenarios in elliptical galaxies. We confirm that NGC1399 has the highest LMXB fraction in GCs of all nearby elliptical galaxies studied so far, even though the exact value depends on galactocentric distance due to the interplay of a differential GC vs galaxy light distribution and the GC color dependence. In fact LMXBs are preferentially hosted by bright, red GCs out to $>5 R_{eff}$ of the galaxy light. The finding that GC hosting LMXBs follow the radial distribution of their parent GC population, argues against the hypothesis that the external dynamical influence of the galaxy affects LMXB formation in GCs. On the other hand field LMXBs closely match the host galaxy light, thus indicating that they are originally formed in situ and not inside GCs. We measure GC structural parameters, finding that the LMXB formation likelihood is influenced independently by mass, metallicity and GCs structural parameters. In particular the GC central density plays a major role in predicting which GC host accreting binaries. Finally our analysis shows that LMXBs in GCs are marginally brighter than those in the field, and in particular the only color-confirmed GC with $L_X>10^{39}$ erg s$^{-1}$ shows no variability, which may indicate a superposition of multiple LMXBs in these systems.
While rich clusters are powerful sources of X-rays, gamma-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consi der special sources of energy, likely AGN feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong gamma-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern gamma-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا