ﻻ يوجد ملخص باللغة العربية
Comparing the images of the jet of the young star RW Aur A, separated by a period of 21.3 years, we found that the outermost jets knots have emerged $approx 350$ yr ago. We argue that at that moment the jet itself has appeared and intensive accretion onto the star has began due to the rearrangement of its protoplanetary disk structure caused by the tidal effect of the companion RW Aur B. More precisely, we assume that the increase of accretion is a response to changing conditions in the outer disk regions, which followed after the sound wave, generated by these changes, crossed the disk in a radial direction. The difference in the parameters of the blue and red lobes of the RW Aur A jet, according to our opinion, is a result of the asymmetric distribution of the circumstellar matter above and below the disk, due to a fly-by of the companion. It was found from the analysis of RW Aur historical light curve that deep and long $(Delta t>150$ days) dimmings of RW Aur A observed after 2010 yr, had no analogues in the previous 110 years. We also associate the change in the character of the photometric variability of the star with the rearrangement of the structure of inner $(r<1$ a.u.) regions of its protoplanetary disk and discuss why these changes began only 350 years after the beginning of the active accretion phase.
Results of UBVRIJHKLM photometry, VRI polarimetry and optical spectroscopy of a young star RW Aur A obtained during 2010-11 and 2014-16 dimming events are presented. During the second dimming the star decreased its brightness to Delta V > 4.5 mag, po
For the active T-Taur star RW Aur A we have performed long-term (~10 yr) monitoring observations of (1) jet imaging in the [Fe II] 1.644-micron emission line using Gemini-NIFS and VLT-SINFONI; (2) optical high-resolution spectroscopy using CFHT-ESPaD
RW Aur is a young binary star that experienced a deep dimming in 2010-11 in component A and a second even deeper dimming from summer 2014 to summer 2016. We present new unresolved multi-band photometry during the 2014-16 eclipse, new emission line sp
V582 Aur is an FU Ori-type young eruptive star in outburst since $sim$1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the
Resolved UBVRI photometry of RW Aur binary was performed on November 13/14, 2014 during the deep dimming of RW Aur with a newly installed 2.5 meter telescope of the Caucasus observatory of Lomonosov Moscow State University at the mount Shatzhatmaz. A