ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA Multiple-Transition Molecular Line Observations of the Ultraluminous Infrared Galaxy IRAS 20551-4250: Different HCN, HCO+, HNC Excitation and Implications for Infrared Radiative Pumping

65   0   0.0 ( 0 )
 نشر من قبل Masatoshi Imanishi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present our ALMA multi-transition molecular line observational results for the ultraluminous infrared galaxy, IRAS 20551-4250, which is known to contain a luminous buried AGN and shows detectable vibrationally excited (v2=1f) HCN and HNC emission lines. The rotational J=1-0, 4-3, and 8-7 of HCN, HCO+, and HNC emission lines were clearly detected at a vibrational ground level (v=0). Vibrationally excited (v2=1f) J=4-3 emission lines were detected for HCN and HNC, but not for HCO+. Their observed flux ratios further support our previously obtained suggestion, based on J=3-2 data, that (1) infrared radiative pumping plays a role in rotational excitation at v=0, at least for HCN and HNC, and (2) HCN abundance is higher than HCO+ and HNC. The flux measurements of the isotopologue H13CN, H13CO+, and HN13C J=3-2 emission lines support the higher HCN abundance scenario. Based on modeling with collisional excitation, we constrain the physical properties of these line-emitting molecular gas, but find that higher HNC rotational excitation than HCN and HCO+ is difficult to explain, due to the higher effective critical density of HNC. We consider the effects of infrared radiative pumping using the available 5-30 micron infrared spectrum and find that our observational results are well explained if the radiation source is located at 30-100 pc from the molecular gas. The simultaneously covered very bright CO J=3-2 emission line displays a broad emission wing, which we interpret as being due to molecular outflow activity with the estimated rate of ~150 Msun/yr.



قيم البحث

اقرأ أيضاً

We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy, IRAS 20551-4250, at HCN/HCO+/HNC J=3-2 lines at both vibrational-ground (v=0) and vibrationally excited (v2=1) levels. This galaxy contains a luminous buried ac tive galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v2=1f J=4-3 emission line. In our ALMA Cycle 2 data, the HCN/HCO+/HNC J=3-2 emission lines at v=0 are clearly detected. The HCN and HNC v2=1f J=3-2 emission lines are also detected, but the HCO+ v2=1f J=3-2 emission line is not. Given the high-energy level of v2=1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5-35 micron spectrum. We found that all of the observational results were reproduced, if the HCN abundance was significantly higher than that of HCO+ and HNC. The flux ratio and excitation temperature between v2=1f and v=0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational (J-level) excitation at v=0 at least for HCN and HNC. The HCN-to-HCO+ v=0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when thederived high HCN opacity is corrected. The enhanced HCN-to-HCO+ flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO+ abundance ratio and sufficient HCN excitation at up to J=4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO+.
We present the results of our ALMA observations of eleven (ultra)luminous infrared galaxies ((U)LIRGs) at J=4-3 of HCN, HCO+, HNC and J=3-2 of HNC. This is an extension of our previously published HCN and HCO+ J=3-2 observations to multiple rotationa l J-transitions of multiple molecules, to investigate how molecular emission line flux ratios vary at different J-transitions. We confirm that ULIRGs that contain or may contain luminous obscured AGNs tend to show higher HCN-to-HCO+ flux ratios than starburst galaxies, both at J=4-3 and J=3-2. For selected HCN-flux-enhanced AGN-important ULIRGs, our isotopologue H13CN, H13CO+, and HN13C J=3-2 line observations suggest a higher abundance of HCN than HCO+ and HNC, which is interpreted to be primarily responsible for the elevated HCN flux in AGN-important galaxies. For such sources, the intrinsic HCN-to-HCO+ flux ratios after line opacity correction will be higher than the observed ratios, making the separation between AGNs and starbursts even larger. The signature of the vibrationally excited (v2=1f) HCN J=4-3 emission line is seen in one ULIRG, IRAS 12112-0305 NE. P Cygni profiles are detected in the HCO+ J=4-3 and J=3-2 lines toward IRAS 15250+3609, with an estimated molecular outflow rate of ~250-750 Mo/year. The SiO J=6-5 line also exhibits a P Cygni profile in IRAS 12112+0305 NE, suggesting the presence of shocked outflow activity. Shock tracers are detected in many sources, suggesting ubiquitous shock activity in the nearby ULIRG population.
We present the results of our ALMA observations of three AGN-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributi ons by AGNs at the HCN and HCO+ J=3-2 emission lines. The HCN and HCO+ J=3-2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited (v2=1f) HCN J=3-2 and HCO+ J=3-2 emission lines are simultaneously covered, and HCN v2=1f J=3-2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491-1808, neither of which show clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 um photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v2=1f to v=0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v2=1f emission lines. The observed HCN-to-HCO+ J=3-2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J=1-0 and J=4-3.
We report ~2 resolution Atacama Large Millimeter/submillimeter Array observations of the HCN(1-0), HCO+(1-0), CO(1-0), CO(2-1), and CO(3-2) lines towards the nearby merging double-nucleus galaxy NGC 3256. We find that the high density gas outflow tra ced in HCN(1-0) and HCO+(1-0) emission is co-located with the diffuse molecular outflow emanating from the southern nucleus, where a low-luminosity active galactic nucleus (AGN) is believed to be the dominant source of the far-infrared luminosity. On the other hand, the same lines were undetected in the outflow region associated with the northern nucleus, whose primary heating source is likely related to starburst activity without obvious signs of AGN. Both HCO+(1-0)/CO(1-0) line ratio (i.e. dense gas fraction) and the CO(3-2)/CO(1-0) line ratio are larger in the southern outflow (0.20$pm$0.04 and 1.3$pm$0.2, respectively) than in the southern nucleus (0.08$pm$0.01, 0.7$pm$0.1, respectively). By investigating these line ratios for each velocity component in the southern outflow, we find that the dense gas fraction increases and the CO(3-2)/CO(1-0) line ratio decreases towards the largest velocity offset. This suggests the existence of a two-phase (diffuse and clumpy) outflow. One possible scenario to produce such a two-phase outflow is an interaction between the jet and the interstellar medium, which possibly triggers shocks and/or star formation associated with the outflow.
179 - Benjamin Godard 2010
Aims. The comparative study of several molecular species at the origin of the gas phase chemistry in the diffuse interstellar medium (ISM) is a key input in unraveling the coupled chemical and dynamical evolution of the ISM. Methods. The lowest rotat ional lines of HCO+, HCN, HNC, and CN were observed at the IRAM-30m telescope in absorption against the lambda 3 mm and lambda 1.3 mm continuum emission of massive star-forming regions in the Galactic plane. The absorption lines probe the gas over kiloparsecs along these lines of sight. The excitation temperatures of HCO+ are inferred from the comparison of the absorptions in the two lowest transitions. The spectra of all molecular species on the same line of sight are decomposed into Gaussian velocity components. Most appear in all the spectra of a given line of sight. For each component, we derived the central opacity, the velocity dispersion, and computed the molecular column density. We compared our results to the predictions of UV-dominated chemical models of photodissociation regions (PDR models) and to those of non-equilibrium models in which the chemistry is driven by the dissipation of turbulent energy (TDR models). Results. The molecular column densities of all the velocity components span up to two orders of magnitude. Those of CN, HCN, and HNC are linearly correlated with each other with mean ratios N(HCN)/N(HNC) = 4.8 $pm$ 1.3 and N(CN)/N(HNC) = 34 $pm$ 12, and more loosely correlated with those of HCO+, N(HNC)/N(HCO+) = 0.5 $pm$ 0.3, N(HCN)/N(HCO+) = 1.9 $pm$ 0.9, and N(CN)/N(HCO+) = 18 $pm$ 9. These ratios are similar to those inferred from observations of high Galactic latitude lines of sight, suggesting that the gas sampled by absorption lines in the Galactic plane has the same chemical properties as that in the Solar neighbourhood. The FWHM of the Gaussian velocity components span the range 0.3 to 3 km s-1 and those of the HCO+ lines are found to be 30% broader than those of CN-bearing molecules. The PDR models fail to reproduce simultaneously the observed abundances of the CN-bearing species and HCO+, even for high-density material (100 cm-3 < nH < 104 cm-3). The TDR models, in turn, are able to reproduce the observed abundances and abundance ratios of all the analysed molecules for the moderate gas densities (30 cm-3 < nH < 200 cm-3) and the turbulent energy observed in the diffuse interstellar medium. Conclusions. Intermittent turbulent dissipation appears to be a promising driver of the gas phase chemistry of the diffuse and translucent gas throughout the Galaxy. The details of the dissipation mechanisms still need to be investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا