ﻻ يوجد ملخص باللغة العربية
We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse problem was formulated for the numericaly generalized the semi-empirical mass formula of Bethe and von Weizs{a}cker. It was solved in step by step way based on the AME2012 nuclear database. The solution of the overdetermined system of nonlinear equations has been obtained with the help of the Aleksandrovs auto-regularization method of Gauss-Newton type for ill-posed problems. In the obtained generalized model the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence. These results help us to evaluate the borders of the nuclear landscape and show their limit. The efficiency of the applied approach was checked by comparing relevant results with the results obtained independently.
The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertai
The dependence on the structure functions and Z, N numbers of the nuclear binding energy is investigated within the inverse problem(IP) approach. This approach allows us to infer the underlying model parameters from experimental observation, rather t
Sequences of experimental ground-state energies are mapped onto concave patterns cured from convexities due to pairing and/or shell effects. The same patterns, completed by a list of excitation energies, can be used to give numerical estimates of the
Nuclear mass contains a wealth of nuclear structure information, and has been widely employed to extract the nuclear effective interactions. The known nuclear mass is usually extracted from the experimental atomic mass by subtracting the masses of el
An omega-meson extension of the Skyrme model - without the Skyrme term but including the pion mass - first considered by Adkins and Nappi is studied in detail for baryon numbers 1 to 8. The static problem is reformulated as a constrained energy minim