ﻻ يوجد ملخص باللغة العربية
The stellar disk of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the $[rm alpha/Fe]$ -- $[rm Fe/H]$ plane. We find two main pathways to creating this dichotomy which operate in different regions of the galaxies: a) an early ($z>1$) and intense high-$rm[alpha/Fe]$ star formation phase in the inner region ($Rlesssim 5$ kpc) induced by gas-rich mergers, followed by more quiescent low-$rm[alpha/Fe]$ star formation; and b) an early phase of high-$rm[alpha/Fe]$ star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-$rm[alpha/Fe]$ sequence stars. We discuss the implication that both processes occurred in the Milky Way.
With the advent of large spectroscopic surveys the amount of high quality chemo-dynamical data in the Milky Way (MW) increased tremendously. Accurately and correctly capturing and explaining the detailed features in the high-quality observational dat
Using a set of 15 high-resolution magnetohydrodynamic cosmological simulations of Milky Way formation, we investigate the origin of the baryonic material found in stars at redshift zero. We find that roughly half of this material originates from subh
In this work we analyse the structural and photometric properties of 21 barred simulated galaxies from the Auriga Project. These consist of Milky Way-mass magneto-hydrodynamical simulations in a $Lambda$CDM cosmological context. In order to compare w
We present a direct comparison of the Pan-Andromeda Archaeological Survey (PAndAS) observations of the stellar halo of M31 with the stellar halos of 6 galaxies from the Auriga simulations. We process the simulated halos through the Auriga2PAndAS pipe
Spectroscopic surveys of the Milky Ways stars have revealed spatial, chemical and kinematical structures that encode its history. In this work, we study their origins using a cosmological zoom simulation, VINTERGATAN, of a Milky Way-mass disc galaxy.