ﻻ يوجد ملخص باللغة العربية
For a long time, there have been no efficient ways of controlling antiferromagnets. Quite a strong magnetic field was required to manipulate the magnetic moments because of a high molecular field and a small magnetic susceptibility. It was also difficult to detect the orientation of the magnetic moments since the net magnetic moment is effectively zero. For these reasons, research on antiferromagnets has not been progressed as drastically as that on ferromagnets which are the main materials in modern spintronic devices. Here we show that the magnetic moments in NiO, a typical natural antiferromagnet, can indeed be controlled by the spin torque with a relatively small electric current density (~5 x 10^7 A/cm^2) and their orientation is detected by the transverse resistance resulting from the spin Hall magnetoresistance . The demonstrated techniques of controlling and detecting antiferromagnets would outstandingly promote the methodologies in the recently emerged antiferromagnetic spintronics. Furthermore, our results essentially lead to a spin torque antiferromagnetic memory.
As electrical control of Neel order opens the door to reliable antiferromagnetic spintronic devices, understanding the microscopic mechanisms of antiferromagnetic switching is crucial. Spatially-resolved studies are necessary to distinguish multiple
NiO is a prototypical antiferromagnet with a characteristic resonance frequency in the THz range. From atomistic spin dynamics simulations that take into account the crystallographic structure of NiO, and in particular a magnetic anisotropy respectin
Voltage-controlled spintronic devices utilizing the spin degree of freedom are desirable for future applications, and may allow energy-efficient information processing. Pure spin current can be created by thermal excitations in magnetic systems via t
We investigate the effect of a direct current on propagating spin waves in a CoFeB/Ta bilayer structure. Using the micro-Brillouin light scattering technique, we observe that the spin wave amplitude may be attenuated or amplified depending on the dir
As a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray field as their single crystalline counterparts, but without