ﻻ يوجد ملخص باللغة العربية
We introduce the family of $k$-gap-planar graphs for $k geq 0$, i.e., graphs that have a drawing in which each crossing is assigned to one of the two involved edges and each edge is assigned at most $k$ of its crossings. This definition is motivated by applications in edge casing, as a $k$-gap-planar graph can be drawn crossing-free after introducing at most $k$ local gaps per edge. We present results on the maximum density of $k$-gap-planar graphs, their relationship to other classes of beyond-planar graphs, characterization of $k$-gap-planar complete graphs, and the computational complexity of recognizing $k$-gap-planar graphs.
We prove that the spectral gap of a finite planar graph $X$ is bounded by $lambda_1(X)le C(frac{log(diam X)}{diam X})^2$ where $C$ depends only on the degree of $X$. We then give a sequence of such graphs showing the the above estimate cannot be impr
We initiate the study of the following problem: Given a non-planar graph G and a planar subgraph S of G, does there exist a straight-line drawing {Gamma} of G in the plane such that the edges of S are not crossed in {Gamma} by any edge of G? We give
Graph drawing addresses the problem of finding a layout of a graph that satisfies given aesthetic and understandability objectives. The most important objective in graph drawing is minimization of the number of crossings in the drawing, as the aesthe
For a fixed virtual scene (=collection of simplices) S and given observer position p, how many elements of S are weakly visible (i.e. not fully occluded by others) from p? The present work explores the trade-off between query time and preprocessing s
We present self-adjusting data structures for answering point location queries in convex and connected subdivisions. Let $n$ be the number of vertices in a convex or connected subdivision. Our structures use $O(n)$ space. For any convex subdivision $