ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy wide radio induced feedback in a radio quiet quasar

62   0   0.0 ( 0 )
 نشر من قبل Montserrat Villar-Martin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a radio quiet type 2 quasar (SDSS J165315.06+234943.0 nicknamed the Beetle at z=0.103) with unambiguous evidence for active galactic nucleus (AGN) radio induced feedback acting across a total extension of ~46 kpc and up to ~26 kpc from the AGN. To the best of our knowledge, this is the first radio quiet system where radio induced feedback has been securely identified at >>several kpc from the AGN. Turbulent gas is also found far from the radio axis, ~25 kpc in the perpendicular direction. We propose a scenario in which the radio structures have perforated the interstellar medium of the galaxy and escaped into the circumgalactic medium. While advancing, they have interacted with in-situ gas modifying its properties. Our results show that jets of modest power can be the dominant feedback mechanism acting across huge volumes in radio quiet systems, including highly accreting luminous AGN, where radiative mode feedback may be expected.



قيم البحث

اقرأ أيضاً

424 - P. Hartley , N. Jackson , D. Sluse 2019
We present e-MERLIN and EVN observations which reveal unambiguous jet activity within radio quiet quasar HS~0810+2554. With an intrinsic flux density of 880~nJy, this is the faintest radio source ever imaged. The findings present new evidence against the idea that radio loud and radio quiet quasars are powered by different underlying radio emission mechanisms, showing instead that the same AGN mechanism can operate as the dominant source of radio emission even in the very lowest radio luminosity quasars. Thanks to strong gravitational lensing, our source is not only visible, but with VLBI is imaged to a scale of just 0.27~pc: the highest ever resolution image of a radio quiet quasar. Brightness temperatures of at least $8.4times 10^6$~K are associated with two highly compact components, and subsequent modelling of the lensed system has revealed that the components are linearly aligned on opposing sides of the optical quasar core, with the typical morphology of a compact symmetric object (CSO). Given that this source has been found to fall on the radio--FIR correlation, we suggest that the radio--FIR correlation cannot always be used to rule out AGN activity in favour of star-formation activity. The correlation -- or at least its scatter -- may conceal the coexistence of kinetic and radiative feedback modes in AGN. Modelling of the lensing mass itself points to a non-smooth mass distribution, hinting at the presence of dark matter substructure which has manifested as astrometric perturbations of the VLBI lensed images, posing no threat to the CDM paradigm.
We report the discovery of a small separation quasar pair (z=0.586, O=18.4, 19.2, sep. = 2.3 arcsec) associated with the radio source FIRST J164311.3+315618 (S_1400 = 120 mJy). The spectrum of the brighter quasar (A) has a much stronger narrow emissi on-line spectrum than the other (B), and also stronger Balmer lines relative to the continuum. The continuum ratio of the spectra is flat in the blue at about 2.1, but falls to 1.5 at longer wavelengths. A K image shows two unresolved sources with a flux ratio of 1.3. The different colors appear to result from the contribution of the host galaxy of B, which is evident from Ca II and high-order Balmer absorption lines indicative of a substantial young stellar population. New 3.6 cm VLA observations show that the compact radio source is coincident with quasar A (B is only marginally detected). We rule out the lensing hypothesis because the optical flux ratio is A/B = 1.2 to 2, while the radio flux ratio is A/B > 40, and conclude that this system is a binary. Moreover, the radio-loud quasar is a compact steep spectrum source. FIRST J164311.3+315618A, B is the lowest redshift and smallest separation binary quasar yet identified.
We present multi-frequency (1-8 GHz) VLA data, combined with VIMOS IFU data and HST imaging, of a z=0.085 radio-quiet type 2 quasar (with L(1.4GHz)~5e23 W/Hz and L(AGN)~2e45 erg/s). Due to the morphology of its emission-line region, the target (J1430 +1339) has been referred to as the Teacup AGN in the literature. We identify bubbles of radio emission that are extended ~10-12 kpc to both the east and west of the nucleus. The edge of the brighter eastern bubble is co-spatial with an arc of luminous ionized gas. We also show that the Teacup AGN hosts a compact radio structure, located ~0.8 kpc from the core position, at the base of the eastern bubble. This radio structure is co-spatial with an ionized outflow with an observed velocity of v=-740 km/s. This is likely to correspond to a jet, or possibly a quasar wind, interacting with the interstellar medium at this position. The large-scale radio bubbles appear to be inflated by the central AGN, which indicates that the AGN can also interact with the gas on >~10 kpc scales. Our study highlights that even when a quasar is formally radio-quiet the radio emission can be extremely effective for observing the effects of AGN feedback.
Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discus s how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among Type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar main sequence with both extreme optical FeII emission (R_{FeII} ~ 1) and a large CIV 1549 profile blueshift (~ -1500 km/s). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year timescale consistent with compact steep-spectrum (CSS or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/L_{Edd} quasars we suggest that 3C 57 is an evolved RL quasar (i.e. large Black Hole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong FeII emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low redshift source and resultant unusually high Eddington ratio giving rise to the atypical CIV 1549.
We investigate the clustering properties of 45441 radio-quiet quasars (RQQs) and 3493 radio-loud quasars (RLQs) drawn from a joint use of the Sloan Digital Sky Survey (SDSS) and Faint Images of the Radio Sky at 20 cm (FIRST) surveys in the range $0.3 <z<2.3$. This large spectroscopic quasar sample allow us to investigate the clustering signal dependence on radio-loudness and black hole (BH) virial mass. We find that RLQs are clustered more strongly than RQQs in all the redshift bins considered. We find a real-space correlation length of $r_{0}=6.59_{-0.24}^{+0.33},h^{-1},textrm{Mpc}$ and $r_{0}=10.95_{-1.58}^{+1.22},h^{-1},textrm{Mpc}$ { ormalsize{}for} RQQs and RLQs, respectively, for the full redshift range. This implies that RLQs are found in more massive host haloes than RQQs in our samples, with mean host halo masses of $sim4.9times10^{13},h^{-1},M_{odot}$ and $sim1.9times10^{12},h^{-1},M_{odot}$, respectively. Comparison with clustering studies of different radio source samples indicates that this mass scale of $gtrsim1times10^{13},h^{-1},M_{odot}$ is characteristic for the bright radio-population, which corresponds to the typical mass of galaxy groups and galaxy clusters. The similarity we find in correlation lengths and host halo masses for RLQs, radio galaxies and flat-spectrum radio quasars agrees with orientation-driven unification models. Additionally, the clustering signal shows a dependence on black hole (BH) mass, with the quasars powered by the most massive BHs clustering more strongly than quasars having less massive BHs. We suggest that the current virial BH mass estimates may be a valid BH proxies for studying quasar clustering. We compare our results to a previous theoretical model that assumes that quasar activity
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا