ﻻ يوجد ملخص باللغة العربية
Sparse blind deconvolution is the problem of estimating the blur kernel and sparse excitation, both of which are unknown. Considering a linear convolution model, as opposed to the standard circular convolution model, we derive a sufficient condition for stable deconvolution. The columns of the linear convolution matrix form a Riesz basis with the tightness of the Riesz bounds determined by the autocorrelation of the blur kernel. Employing a Bayesian framework results in a non-convex, non-smooth cost function consisting of an $ell_2$ data-fidelity term and a sparsity promoting $ell_p$-norm ($0 le p le 1$) regularizer. Since the $ell_p$-norm is not differentiable at the origin, we employ an $epsilon$-regularized $ell_p$-norm as a surrogate. The data term is also non-convex in both the blur kernel and excitation. An iterative scheme termed alternating minimization (Alt. Min.) $ell_p-ell_2$ projections algorithm (ALPA) is developed for optimization of the $epsilon$-regularized cost function. Further, we demonstrate that, in every iteration, the $epsilon$-regularized cost function is non-increasing and more importantly, bounds the original $ell_p$-norm-based cost. Due to non-convexity of the cost, the accuracy of estimation is largely influenced by the initialization. Considering regularized least-squares estimate as the initialization, we analyze how the initialization errors are concentrated, first in Gaussian noise, and then in bounded noise, the latter case resulting in tighter bounds. Comparisons with state-of-the-art blind deconvolution algorithms show that the deconvolution accuracy is higher in case of ALPA. In the context of natural speech signals, ALPA results in accurate deconvolution of a voiced speech segment into a sparse excitation and smooth vocal tract response.
In the blind deconvolution problem, we observe the convolution of an unknown filter and unknown signal and attempt to reconstruct the filter and signal. The problem seems impossible in general, since there are seemingly many more unknowns than knowns
Multichannel blind deconvolution is the problem of recovering an unknown signal $f$ and multiple unknown channels $x_i$ from their circular convolution $y_i=x_i circledast f$ ($i=1,2,dots,N$). We consider the case where the $x_i$s are sparse, and con
We study the problem of reconstructing a block-sparse signal from compressively sampled measurements. In certain applications, in addition to the inherent block-sparse structure of the signal, some prior information about the block support, i.e. bloc
The task of finding a sparse signal decomposition in an overcomplete dictionary is made more complicated when the signal undergoes an unknown modulation (or convolution in the complementary Fourier domain). Such simultaneous sparse recovery and blind
The Internet of Things and specifically the Tactile Internet give rise to significant challenges for notions of security. In this work, we introduce a novel concept for secure massive access. The core of our approach is a fast and low-complexity blin