ﻻ يوجد ملخص باللغة العربية
We show how the basic idea of parabolic Jacobi relaxation can be modified to obtain a new class of hyperbolic relaxation schemes that are suitable for the solution of elliptic equations. Some of the analytic and numerical properties of hyperbolic relaxation are examined. We describe its implementation as a first order system in a pseudospectral evolution code, demonstrating that certain elliptic equations can be solved within a framework for hyperbolic evolution systems. Applications include various initial data problems in numerical general relativity. In particular we generate initial data for the evolution of a massless scalar field, a single neutron star, and binary neutron star systems.
We make a brief historical review to the moment model reduction to the kinetic equations, particularly the Grads moment method for Boltzmann equation. The focus is on the hyperbolicity of the reduced model, which is essential to the existence of its
We present a symmetric hyperbolic formulation of the Einstein equations in affine-null coordinates. Giannakopoulos et. al. (arXiv:2007.06419) recently showed that the most commonly numerically implemented formulations of the Einstein equations in aff
Under consideration is the hyperbolic relaxation of a semilinear reaction-diffusion equation on a bounded domain, subject to a dynamic boundary condition. We also consider the limit parabolic problem with the same dynamic boundary condition. Each pro
In this paper, we prove some pointwise comparison results between the solutions of some second-order semilinear elliptic equations in a domain $Omega$ of $R^n$ and the solutions of some radially symmetric equations in the equimeasurable ball $Omega^*
We develop a geometrically intrinsic formulation of the arbitrary-order Virtual Element Method (VEM) on polygonal cells for the numerical solution of elliptic surface partial differential equations (PDEs). The PDE is first written in covariant form u