ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering functional brain signature via random matrix theory

70   0   0.0 ( 0 )
 نشر من قبل Diego Garlaschelli
 تاريخ النشر 2017
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The brain is organized in a modular way, serving multiple functionalities. This multiplicity requires that both positive (e.g. excitatory, phase-coherent) and negative (e.g. inhibitory, phase-opposing) interactions take place across brain modules. Unfortunately, most methods to detect modules from time series either neglect or convert to positive any measured negative correlation. This may leave a significant part of the sign-dependent functional structure undetected. Here we present a novel method, based on random matrix theory, for the identification of sign-dependent modules in the brain. Our method filters out the joint effects of local (unit-specific) noise and global (system-wide) dependencies that empirically obfuscate such structure. The method is guaranteed to identify an optimally contrasted functional `signature, i.e. a partition into modules that are positively correlated internally and negatively correlated across. The method is purely data-driven, does not use any arbitrary threshold or network projection, and outputs only statistically significant structure. In measurements of neuronal gene expression in the biological clock of mice, the method systematically uncovers two otherwise undetectable, negatively correlated modules whose relative size and mutual interaction strength are found to depend on photoperiod. The neurons alternating between the two modules define a candidate region of functional plasticity for circadian modulation.



قيم البحث

اقرأ أيضاً

We investigated the topological properties of stock networks through a comparison of the original stock network with the estimated stock network from the correlation matrix created by the random matrix theory (RMT). We used individual stocks traded o n the market indices of Korea, Japan, Canada, the USA, Italy, and the UK. The results are as follows. As the correlation matrix reflects the more eigenvalue property, the estimated stock network from the correlation matrix gradually increases the degree of consistency with the original stock network. Each stock with a different number of links to other stocks in the original stock network shows a different response. In particular, the largest eigenvalue is a significant deterministic factor in terms of the formation of a stock network.
Edge-centric functional connectivity (eFC) has recently been proposed to characterise the finest time resolution on the FC dynamics without the concomitant assumptions of sliding-window approaches. Here, we lay the mathematical foundations for the ed ge-centric analysis and examine its main findings from a quantitative perspective. The proposed framework provides a theoretical explanation for the observed occurrence of high-amplitude edge cofluctuations across datasets and clarifies why a few large events drive the node-centric FC (nFC). Our exposition also constitutes a critique of the edge-centric approach as currently applied to functional MRI (fMRI) time series. The central argument is that the existing findings based on edge time series can be derived from the static nFC under a null hypothesis that only accounts for the observed static spatial correlations and not the temporal ones. Challenging our analytic predictions against fMRI data from the Human Connectome Project confirms that the nFC is sufficient to replicate the eFC matrix, the edge communities, the large cofluctuations, and the corresponding brain activity mode. We conclude that the temporal structure of the edge time series has not so far been exploited sufficiently and encourage further work to explore features that cannot be explained by the presented static null model.
We assess electrical brain dynamics before, during, and after one-hundred human epileptic seizures with different anatomical onset locations by statistical and spectral properties of functionally defined networks. We observe a concave-like temporal e volution of characteristic path length and cluster coefficient indicative of a movement from a more random toward a more regular and then back toward a more random functional topology. Surprisingly, synchronizability was significantly decreased during the seizure state but increased already prior to seizure end. Our findings underline the high relevance of studying complex systems from the view point of complex networks, which may help to gain deeper insights into the complicated dynamics underlying epileptic seizures.
Understanding how brain functions has been an intriguing topic for years. With the recent progress on collecting massive data and developing advanced technology, people have become interested in addressing the challenge of decoding brain wave data in to meaningful mind states, with many machine learning models and algorithms being revisited and developed, especially the ones that handle time series data because of the nature of brain waves. However, many of these time series models, like HMM with hidden state in discrete space or State Space Model with hidden state in continuous space, only work with one source of data and cannot handle different sources of information simultaneously. In this paper, we propose an extension of State Space Model to work with different sources of information together with its learning and inference algorithms. We apply this model to decode the mind state of students during lectures based on their brain waves and reach a significant better results compared to traditional methods.
89 - Moo K. Chung 2021
Recent developments in graph theoretic analysis of complex networks have led to deeper understanding of brain networks. Many complex networks show similar macroscopic behaviors despite differences in the microscopic details. Probably two most often o bserved characteristics of complex networks are scale-free and small-world properties. In this paper, we will explore whether brain networks follow scale-free and small-worldness among other graph theory properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا