ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic-field driven ambipolar quantum Hall effect in epitaxial graphene close to the charge neutrality point

84   0   0.0 ( 0 )
 نشر من قبل Benoit Jouault
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the disorder of epitaxial graphene close to the charge neutrality point (CNP) by various methods: i) at room temperature, by analyzing the dependence of the resistivity on the Hall coefficient ; ii) by fitting the temperature dependence of the Hall coefficient down to liquid helium temperature; iii) by fitting the magnetoresistances at low temperature. All methods converge to give a disorder amplitude of $(20 pm 10)$ meV. Because of this relatively low disorder, close to the CNP, at low temperature, the sample resistivity does not exhibit the standard value $simeq h/4e^2$ but diverges. Moreover, the magnetoresistance curves have a unique ambipolar behavior, which has been systematically observed for all studied samples. This is a signature of both asymmetry in the density of states and in-plane charge transfer. The microscopic origin of this behavior cannot be unambiguously determined. However, we propose a model in which the SiC substrate steps qualitatively explain the ambipolar behavior.



قيم البحث

اقرأ أيضاً

Graphene grown epitaxially on SiC, close to the charge neutrality point (CNP), in an orthogonal magnetic field shows an ambipolar behavior of the transverse resistance accompanied by a puzzling longitudinal magnetoresistance. When injecting a transve rse current at one end of the Hall bar, a sizeable non local transverse magnetoresistance is measured at low temperature. While Zeeman spin effect seems not to be able to justify these phenomena, some dissipation involving edge states at the boundaries could explain the order of magnitude of the non local transverse magnetoresistance, but not the asymmetry when the orientation of the orthogonal magnetic field is reversed. As a possible contribution to the explanation of the measured non local magnetoresistance which is odd in the magnetic field, we derive a hydrodynamic approach to transport in this system, which involves particle and hole Dirac carriers, in the form of charge and energy currents. We find that thermal diffusion can take place on a large distance scale, thanks to long recombination times, provided a non insulating bulk of the Hall bar is assumed, as recent models seem to suggest in order to explain the appearance of the longitudinal resistance. In presence of the local source, some leakage of carriers from the edges generates an imbalance of carriers of opposite sign, which are separated in space by the magnetic field and diffuse along the Hall bar generating a non local transverse voltage.
We study an epitaxial graphene monolayer with bilayer inclusions via magnetotransport measurements and scanning gate microscopy at low temperatures. We find that bilayer inclusions can be metallic or insulating depending on the initial and gated carr ier density. The metallic bilayers act as equipotential shorts for edge currents, while closely spaced insulating bilayers guide the flow of electrons in the monolayer constriction, which was locally gated using a scanning gate probe.
308 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua ntum Hall effect is shown on epitaxial graphene monolayers that were deliberately grown over substrate steps and subjected to harsh processing procedures, demonstrating the robustness of the epitaxial graphene monolayers and the immunity of their transport properties to temperature, contamination and substrate imperfections. The mobility of the monolayer C-face sample is 19,000 cm^2/Vs. This is an important step towards the realization of epitaxial graphene based electronics.
The magnetic field-dependent longitudinal and Hall components of the resistivity rho_xx(H) and rho_xy(H) are measured in graphene on silicon dioxide substrates at temperatures from 1.6 K to room temperature. At charge densities near the charge-neutra lity point rho_xx(H) is strongly enhanced and rho_xy(H) is suppressed, indicating nearly equal electron and hole contributions to the transport current. The data are inconsistent with uniformly distributed electron and hole concentrations (two-fluid model) but in excellent agreement with the recent theoretical prediction for inhomogeneously distributed electron and hole regions of equal mobility. At low temperatures and high magnetic fields rho_xx(H) saturates to a value ~h/e^2, with Hall conductivity << e^2/h, which may indicate a regime of localized v = 2 and v = -2 quantum Hall puddles.
The transport properties of epitaxial graphene on SiC(0001) at quantizing magnetic fields are investigated. Devices patterned perpendicularly to SiC terraces clearly exhibit bilayer inclusions distributed along the substrate step edges. We show that the transport properties in the quantum Hall regime are heavily affected by the presence of bilayer inclusions, and observe a significant departure from the conventional quantum Hall characteristics. A quantitative model involving enhanced inter-channel scattering mediated by the presence of bilayer inclusions is presented that successfully explains the observed symmetry properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا