ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermis golden rule, the origin and breakdown of Markovian master equations, and the relationship between oscillator baths and the random matrix model

73   0   0.0 ( 0 )
 نشر من قبل Kurt Jacobs
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fermis golden rule applies to a situation in which a single quantum state $|psirangle$ is coupled to a near-continuum. This quasi-continuum coupling structure results in a rate equation for the population of $|psirangle$. Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a cascade made up of the quasi-continuum coupling structures of Fermis golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon-Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the random matrix model (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.



قيم البحث

اقرأ أيضاً

72 - J. M. Zhang , Y. Liu 2016
Fermis golden rule is of great importance in quantum dynamics. However, in many textbooks on quantum mechanics, its contents and limitations are obscured by the approximations and arguments in the derivation, which are inevitable because of the gener ic setting considered. Here we propose to introduce it by an ideal model, in which the quasi-continuum band consists of equaldistant levels extending from $-infty $ to $+infty $, and each of them couples to the discrete level with the same strength. For this model, the transition probability in the first order perturbation approximation can be calculated analytically by invoking the Poisson summation formula. It turns out to be a emph{piecewise linear} function of time, demonstrating on one hand the key features of Fermis golden rule, and on the other hand that the rule breaks down beyond the emph{Heisenberg time}, even when the first order perturbation approximation itself is still valid.
129 - C. Dullemond 2002
A study is made of the behavior of unstable states in simple models which nevertheless are realistic representations of situations occurring in nature. It is demonstrated that a non-exponential decay pattern will ultimately dominate decay due to a lo wer limit to the energy. The survival rate approaches zero faster than the inverse square of the time when the time goes to infinity.
Fermis golden rule defines the transition rate between weakly coupled states and can thus be used to describe a multitude of molecular processes including electron-transfer reactions and light-matter interaction. However, it can only be calculated if the wave functions of all internal states are known, which is typically not the case in molecular systems. Marcus theory provides a closed-form expression for the rate constant, which is a classical limit of the golden rule, and indicates the existence of a normal regime and an inverted regime. Semiclassical instanton theory presents a more accurate approximation to the golden-rule rate including nuclear quantum effects such as tunnelling, which has so far been applicable to complex anharmonic systems in the normal regime only. In this paper we extend the instanton method to the inverted regime and study the properties of the periodic orbit, which describes the tunnelling mechanism via two imaginary-time trajectories, one of which now travels in negative imaginary time. It is known that tunnelling is particularly prevalent in the inverted regime, even at room temperature, and thus this method is expected to be useful in studying a wide range of molecular transitions occurring in this regime.
138 - E. Langmann , G. Lindblad 2008
We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renorm alization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.
157 - Andrey Pereverzev 2003
Time evolution of a harmonic oscillator linearly coupled to a heat bath is compared for three classes of initial states for the bath modes - grand canonical ensemble, number states and coherent states. It is shown that for a wide class of number stat es the behavior of the oscillator is similar to the case of the equilibrium bath. If the bath modes are initially in coherent states, then the variances of the oscillator coordinate and momentum, as well as its entanglement to the bath, asymptotically approach the same values as for the oscillator at zero temperature and the average coordinate and momentum show a Brownian-like behavior. We derive an exact master equation for the characteristic function of the oscillator valid for arbitrary factorized initial conditions. In the case of the equilibrium bath this equation reduces to an equation of the Hu-Paz-Zhang type, while for the coherent states bath it leads to an exact stochastic master equation with a multiplicative noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا