ﻻ يوجد ملخص باللغة العربية
We report on enhanced fluorescence of lead sulfide quantum dots interacting with leaky modes of slab-type silicon photonic crystals. The photonic crystal slabs were fabricated supporting leaky modes in the near infrared wavelength range. Lead sulfite quantum dots which are resonant the same spectral range were prepared in a thin layer above the slab. We selectively excited the leaky modes by tuning wavelength and angle of incidence of the laser source and measured distinct resonances of enhanced fluorescence. By an appropriate experiment design, we ruled out directional light extraction effects and determined the impact of enhanced excitation. Three-dimensional numerical simulations consistently explain the experimental findings by strong near-field enhancements in the vicinity of the photonic crystal surface. Our study provides a basis for systematic tailoring of photonic crystals used in biological applications such as biosensing and single molecule detection, as well as quantum dot solar cells and spectral conversion applications.
We use an optical fiber taper waveguide to probe PbS quantum dots (QDs) dried on Si photonic crystal cavities near 1.55 $mu$m. We demonstrate that a low density ($lesssim 100 mu$m$^{-2}$) of QDs does not significantly degrade cavity quality factors a
We study the group velocity of light in layer-by-layer chiral photonic crystals composed of dielectrics and metals. Through studying the band structures with an extended-zone scheme that is given by a Fourier analysis, we show the existence of negati
We report a study of the quantum dot emission in short photonic crystal waveguides. We observe that the quantum dot photoluminescence intensity and decay rate are strongly enhanced when the emission energy is in resonance with Fabry-Perot cavity mode
We clarify theoretically that the topological ring-cavity (TRC) modes propagating along the interface between two honeycomb-type photonic crystals distinct in topology can be exploited for achieving stable single-mode lasing, with the maximal intensi
Effective magnetic fields have enabled unprecedented manipulation of neutral particles including photons. In most studied cases, the effective gauge fields are defined through the phase of mode coupling between spatially discrete elements, such as op