ﻻ يوجد ملخص باللغة العربية
Following an idea by Joyner et al. [EPL, 107 (2014) 50004] a microwave graph with antiunitary symmetry T obeying T^2=-1 has been realized. The Kramers doublets expected for such systems have been clearly identified and could be lifted by a perturbation which breaks the antiunitary symmetry. The observed spectral level spacings distribution of the Kramers doublets is in agreement with the predictions from the Gaussian symplectic ensemble (GSE), expected for chaotic systems with such a symmetry. In addition results on the two-point correlation function, the spectral form factor, the number variance and the spectral rigidity are presented, as well as on the transition from GSE to GOE statistics by continuously changing T from T^2=-1 to T^2=1.
The Landauer-Buttiker formalism establishes an equivalence between the electrical conduction through a device, e.g., a quantum dot, and the transmission. Guided by this analogy we perform transmission measurements through three-port microwave graphs
Transmission measurements through three-port microwave graphs are performed in a symmetric setting, in analogy to three-terminal voltage drop devices with orthogonal, unitary, and symplectic symmetry. The terminal used as a probe is symmetrically loc
The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50 Ohm load to an additional vertex
We present experimental and theoretical results for the fluctuation properties in the incomplete spectra of quantum systems with symplectic symmetry and a chaotic dynamics in the classical limit. To obtain theoretical predictions, we extend the rando
We show, using either Fock space techniques or Macdonald difference operators, that certain symplectic and orthogonal analogues of Okounkovs Schur measure are determinantal with kernels given by explicit double contour integrals. We give two applicat