ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Sampling for Rapidly Matching Histograms

174   0   0.0 ( 0 )
 نشر من قبل Stephen Macke
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In exploratory data analysis, analysts often have a need to identify histograms that possess a specific distribution, among a large class of candidate histograms, e.g., find countries whose income distribution is most similar to that of Greece. This distribution could be a new one that the user is curious about, or a known distribution from an existing histogram visualization. At present, this process of identification is brute-force, requiring the manual generation and evaluation of a large number of histograms. We present FastMatch: an end-to-end approach for interactively retrieving the histogram visualizations most similar to a user-specified target, from a large collection of histograms. The primary technical contribution underlying FastMatch is a probabilistic algorithm, HistSim, a theoretically sound sampling-based approach to identify the top-$k$ closest histograms under $ell_1$ distance. While HistSim can be used independently, within FastMatch we couple HistSim with a novel system architecture that is aware of practical considerations, employing asynchronous block-based sampling policies, building on lightweight sampling engines developed in recent work. FastMatch obtains near-perfect accuracy with up to $35times$ speedup over approaches that do not use sampling on several real-world datasets.



قيم البحث

اقرأ أيضاً

Graph pattern matching algorithms to handle million-scale dynamic graphs are widely used in many applications such as social network analytics and suspicious transaction detections from financial networks. On the other hand, the computation complexit y of many graph pattern matching algorithms is expensive, and it is not affordable to extract patterns from million-scale graphs. Moreover, most real-world networks are time-evolving, updating their structures continuously, which makes it harder to update and output newly matched patterns in real time. Many incremental graph pattern matching algorithms which reduce the number of updates have been proposed to handle such dynamic graphs. However, it is still challenging to recompute vertices in the incremental graph pattern matching algorithms in a single process, and that prevents the real-time analysis. We propose an incremental graph pattern matching algorithm to deal with time-evolving graph data and also propose an adaptive optimization system based on reinforcement learning to recompute vertices in the incremental process more efficiently. Then we discuss the qualitative efficiency of our system with several types of data graphs and pattern graphs. We evaluate the performance using million-scale attributed and time-evolving social graphs. Our incremental algorithm is up to 10.1 times faster than an existing graph pattern matching and 1.95 times faster with the adaptive systems in a computation node than naive incremental processing.
Probabilistic databases play a preeminent role in the processing and management of uncertain data. Recently, many database research efforts have integrated probabilistic models into databases to support tasks such as information extraction and labeli ng. Many of these efforts are based on batch oriented inference which inhibits a realtime workflow. One important task is entity resolution (ER). ER is the process of determining records (mentions) in a database that correspond to the same real-world entity. Traditional pairwise ER methods can lead to inconsistencies and low accuracy due to localized decisions. Leading ER systems solve this problem by collectively resolving all records using a probabilistic graphical model and Markov chain Monte Carlo (MCMC) inference. However, for large datasets this is an extremely expensive process. One key observation is that, such exhaustive ER process incurs a huge up-front cost, which is wasteful in practice because most users are interested in only a small subset of entities. In this paper, we advocate pay-as-you-go entity resolution by developing a number of query-driven collective ER techniques. We introduce two classes of SQL queries that involve ER operators --- selection-driven ER and join-driven ER. We implement novel variations of the MCMC Metropolis Hastings algorithm to generate biased samples and selectivity-based scheduling algorithms to support the two classes of ER queries. Finally, we show that query-driven ER algorithms can converge and return results within minutes over a database populated with the extraction from a newswire dataset containing 71 million mentions.
To maintain the accuracy of supervised learning models in the presence of evolving data streams, we provide temporally-biased sampling schemes that weight recent data most heavily, with inclusion probabilities for a given data item decaying exponenti ally over time. We then periodically retrain the models on the current sample. This approach speeds up the training process relative to training on all of the data. Moreover, time-biasing lets the models adapt to recent changes in the data while -- unlike in a sliding-window approach -- still keeping some old data to ensure robustness in the face of temporary fluctuations and periodicities in the data values. In addition, the sampling-based approach allows existing analytic algorithms for static data to be applied to dynamic streaming data essentially without change. We provide and analyze both a simple sampling scheme (T-TBS) that probabilistically maintains a target sample size and a novel reservoir-based scheme (R-TBS) that is the first to provide both complete control over the decay rate and a guaranteed upper bound on the sample size, while maximizing both expected sample size and sample-size stability. The latter scheme rests on the notion of a fractional sample and, unlike T-TBS, allows for data arrival rates that are unknown and time varying. R-TBS and T-TBS are of independent interest, extending the known set of unequal-probability sampling schemes. We discuss distributed implementation strategies; experiments in Spark illuminate the performance and scalability of the algorithms, and show that our approach can increase machine learning robustness in the face of evolving data.
Graph edit distance / similarity is widely used in many tasks, such as graph similarity search, binary function analysis, and graph clustering. However, computing the exact graph edit distance (GED) or maximum common subgraph (MCS) between two graphs is known to be NP-hard. In this paper, we propose the hierarchical graph matching network (HGMN), which learns to compute graph similarity from data. HGMN is motivated by the observation that two similar graphs should also be similar when they are compressed into more compact graphs. HGMN utilizes multiple stages of hierarchical clustering to organize a graph into successively more compact graphs. At each stage, the earth mover distance (EMD) is adopted to obtain a one-to-one mapping between the nodes in two graphs (on which graph similarity is to be computed), and a correlation matrix is also derived from the embeddings of the nodes in the two graphs. The correlation matrices from all stages are used as input for a convolutional neural network (CNN), which is trained to predict graph similarity by minimizing the mean squared error (MSE). Experimental evaluation on 4 datasets in different domains and 4 performance metrics shows that HGMN consistently outperforms existing baselines in the accuracy of graph similarity approximation.
We present a new approach to e-matching based on relational join; in particular, we apply recent database query execution techniques to guarantee worst-case optimal run time. Compared to the conventional backtracking approach that always searches the e-graph top down, our new relational e-matching approach can better exploit pattern structure by searching the e-graph according to an optimized query plan. We also establish the first data complexity result for e-matching, bounding run time as a function of the e-graph size and output size. We prototyped and evaluated our technique in the state-of-the-art egg e-graph framework. Compared to a conventional baseline, relational e-matching is simpler to implement and orders of magnitude faster in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا