ﻻ يوجد ملخص باللغة العربية
We prove the solvability in Sobolev spaces of the conormal derivative problem for the stationary Stokes system with irregular coefficients on bounded Reifenberg flat domains. The coefficients are assumed to be merely measurable in one direction, which may differ depending on the local coordinate systems, and have small mean oscillations in the other directions. In the course of the proof, we use a local version of the Poincare inequality on Reifenberg flat domains, the proof of which is of independent interest.
We study Green functions for stationary Stokes systems satisfying the conormal derivative boundary condition. We establish existence, uniqueness, and various estimates for the Green function under the assumption that weak solutions of the Stokes syst
We study the stationary Stokes system with variable coefficients in the whole space, a half space, and on bounded Lipschitz domains. In the whole and half spaces, we obtain a priori $dot W^1_q$-estimates for any $qin [2,infty)$ when the coefficients
We prove the unique solvability of solutions in Sobolev spaces to the stationary Stokes system on a bounded Reifenberg flat domain when the coefficients are partially BMO functions, i.e., locally they are merely measurable in one direction and have s
This work studies the system of $3D$ stationary Navier-Stokes equations. Several Liouville type theorems are established for solutions in mixed-norm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particular, we show that, under some suff
It is established existence and multiplicity of solutions for strongly nonlinear problems driven by the $Phi$-Laplacian operator on bounded domains. Our main results are stated without the so called $Delta_{2}$ condition at infinity which means that