ﻻ يوجد ملخص باللغة العربية
The recently proposed large momentum effective theory (LaMET) of Ji has led to a burst of activity among lattice practitioners to perform and control the first pioneering calculations of the quasi-PDFs of the nucleon. These calculations represent approximations to the standard PDFs defined as correlation functions of fields with lightlike separation, being instead correlations along a longitudinal direction of the operator $gamma^z$; as such, they differ from standard PDFs by power-suppressed $1 big/ p^2_z$ corrections, becoming exact in the limit $p_z to infty$. Investigating the systematics of this behavior thus becomes crucial to understanding the validity of LaMET calculations. While this has been done using models for the nucleon, an analogous dedicated study has not been carried out for the $pi$ and $rho$ quark distribution functions. Using a constituent quark model, a systematic calculation is performed to estimate the size and $x$ dependence of the finite-$p_z$ effects in these quasi-PDFs, finding them to be potentially tamer for lighter mesons than for the collinear quasi-PDFs of the nucleon.
We show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large $p_3 sim 3$ GeV momenta to get reasona
We discuss the physical nature of quasi-PDFs, especially the reasons for the strong nonperturbative evolution pattern which they reveal in actual lattice gauge calculations. We argue that quasi-PDFs may be treated as hybrids of PDFs and the rest-fram
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model with the entanglement vertex. We propose a practical way of calculating meson screening masses in the NJL-type
We point out a problem of the phenomenological definition of the valence partons as the difference between the partons and antipartons in the context of the NNLO evolution equations. After demonstrating that the classification of the parton degrees o
The quasi-PDF approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization