ﻻ يوجد ملخص باللغة العربية
We estimate the gravitational radiation signature of the electron/positron annihilation-driven neutrino burst accompanying the asymmetric collapse of an initially hydrostatic, radiation-dominated supermassive object suffering the Feynman-Chandrasekhar instability. An object with a mass $5times10^4,M_odot<M<5times10^5,M_odot$, with primordial metallicity, is an optimal case with respect to the fraction of its rest mass emitted in neutrinos as it collapses to a black hole: lower initial mass objects will be subject to scattering-induced neutrino trapping and consequently lower efficiency in this mode of gravitational radiation generation; while higher masses will not get hot enough to radiate significant neutrino energy before producing a black hole. The optimal case collapse will radiate several percent of the stars rest mass in neutrinos and, with an assumed small asymmetry in temperature at peak neutrino production, produces a characteristic linear memory gravitational wave burst signature. The timescale for this signature, depending on redshift, is $sim1{rm~s}$ to $10{rm~s}$, optimal for proposed gravitational wave observatories like DECIGO. Using the response of that detector, and requiring a signal-to-noise ratio SNR $>$ 5, we estimate that collapse of a $sim 5times10^4,M_odot$ supermassive star could produce a neutrino burst-generated gravitational radiation signature detectable to redshift $zlesssim7$. With the envisioned ultimate DECIGO design sensitivity, we estimate that the linear memory signal from these events could be detectable with SNR $> 5$ to $z lesssim13$.
Supermassive black hole (SMBH) coalescences are ubiquitous in the history of the Universe and often exhibit strong accretion activities and powerful jets. These SMBH mergers are also promising candidates for future gravitational wave detectors such a
Pulsars (PSRs) orbiting intermediate or supermassive black holes at the centre of galaxies and globular clusters are known as Extreme Mass Ratio Binaries (EMRBs) and have been identified as precision probes of strong-field GR. For appropriate orbital
We investigate the possibility of observing very low frequency (VLF) electromagnetic radiation produced from the vacuum by gravitational waves. We review the calculations leading to the possibility of vacuum conversion of gravitational waves into ele
The recent detection of possible neutrino emission from the blazar TXS 0506+056 was the first high-energy neutrino associated with an astrophysical source, making this special type of active galaxies promising neutrino emitters. The fact that two dis
We investigate the evolution of supermassive binary black holes (BBHs) in galaxies with realistic property distributions and the gravitational-wave (GW) radiation from the cosmic population of these BBHs. We incorporate a comprehensive treatment of t