ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance and structure of single-mode bosonic codes

59   0   0.0 ( 0 )
 نشر من قبل Victor V. Albert
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce new codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channels hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat/binomial/GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multi-qubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a new multi-qudit code.



قيم البحث

اقرأ أيضاً

We construct a new class of quantum error-correcting codes for a bosonic mode which are advantageous for applications in quantum memories, communication, and scalable computation. These binomial quantum codes are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the timestep between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to cat codes based on superpositions of the coherent states, but offer several advantages such as smaller mean number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
Bosonic quantum error-correcting codes offer a viable direction towards reducing the hardware overhead required for fault-tolerant quantum information processing. A broad class of bosonic codes, namely rotation-symmetric codes, can be characterized b y their phase-space rotation symmetry. However, their performance has been examined to date only within an idealistic noise model. Here, we further analyze the error correction capabilities of rotation-symmetric codes using a teleportation-based error correction circuit. To this end, we numerically compute the average gate fidelity including measurement errors into the noise model of the data qubit. Focusing on physical measurements models, we assess the performance of heterodyne and adaptive homodyne detection in comparison to the previously studied canonical phase measurement. This setting allows us to shed light on the role of different currently available measurement schemes when decoding the encoded information. We find that with the currently achievable measurement efficiencies in microwave optics bosonic rotation codes undergo a substantial decrease in their break-even potential. The results are compared to Gottesman-Kitaev-Preskill codes using a similar error correction circuit which show a greater reduction in performance together with a vulnerability to photon number dephasing. Our results show that highly efficient measurement protocols constitute a crucial building block towards error-corrected quantum information processing with bosonic continuous-variable systems.
A complete analysis of multi-mode bosonic Gaussian channels is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode bosonic Gaussian channels and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. It allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.
Bosonic rotation codes, introduced here, are a broad class of bosonic error-correcting codes based on phase-space rotation symmetry. We present a universal quantum computing scheme applicable to a subset of this class--number-phase codes--which inclu des the well-known cat and binomial codes, among many others. The entangling gate in our scheme is code-agnostic and can be used to interface different rotation-symmetric encodings. In addition to a universal set of operations, we propose a teleportation-based error correction scheme that allows recoveries to be tracked entirely in software. Focusing on cat and binomial codes as examples, we compute average gate fidelities for error correction under simultaneous loss and dephasing noise and show numerically that the error-correction scheme is close to optimal for error-free ancillae and ideal measurements. Finally, we present a scheme for fault-tolerant, universal quantum computing based on concatenation of number-phase codes and Bacon-Shor subsystem codes.
106 - Jihao Fan , Jun Li , Ya Wang 2021
We utilize a concatenation scheme to construct new families of quantum error correction codes that include the Bacon-Shor codes. We show that our scheme can lead to asymptotically good quantum codes while Bacon-Shor codes cannot. Further, the concate nation scheme allows us to derive quantum LDPC codes of distance $Omega(N^{2/3}/loglog N)$ which can improve Hastingss recent result [arXiv:2102.10030] by a polylogarithmic factor. Moreover, assisted by the Evra-Kaufman-Zemor distance balancing construction, our concatenation scheme can yield quantum LDPC codes with non-vanishing code rates and better minimum distance upper bound than the hypergraph product quantum LDPC codes. Finally, we derive a family of fast encodable and decodable quantum concatenated codes with parameters ${Q}=[[N,Omega(sqrt{N}),Omega( sqrt{N})]]$ and they also belong to the Bacon-Shor codes. We show that ${Q}$ can be encoded very efficiently by circuits of size $O(N)$ and depth $O(sqrt{N})$, and can correct any adversarial error of weight up to half the minimum distance bound in $O(sqrt{N})$ time. To the best of our knowledge, they are the most powerful quantum codes for correcting so many adversarial errors in sublinear time by far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا