ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Hodge conjecture for hypersurfaces in toric varieties

92   0   0.0 ( 0 )
 نشر من قبل Ugo Bruzzo
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that very general hypersurfaces in odd-dimensional simplicial projective toric varieties verifying a certain combinatorial property satisfy the Hodge conjecture (these include projective spaces). This gives a connection between the Oda conjecture and Hodge conjecture. We also give an explicit criterion which depends on the degree for very general hypersurfaces for the combinatorial condition to be verified.



قيم البحث

اقرأ أيضاً

We review a combinatoric approach to the Hodge Conjecture for Fermat Varieties and announce new cases where the conjecture is true.
115 - Brian Lawrence , Will Sawin 2020
Faltings proved that there are finitely many abelian varieties of genus $g$ of a number field $K$, with good reduction outside a finite set of primes $S$. Fixing one of these abelian varieties $A$, we prove that there are finitely many smooth hypersu rfaces in $A$, with good reduction outside $S$, representing a given ample class in the Neron-Severi group of $A$, up to translation, as long as the dimension of $A$ is at least $4$. Our approach builds on the approach of arXiv:1807.02721 which studies $p$-adic variations of Hodge structure to turn finiteness results for $p$-adic Galois representations into geometric finiteness statements. A key new ingredient is an approach to proving big monodromy for the variations of Hodge structure arising from the middle cohomology of these hypersurfaces using the Tannakian theory of sheaf convolution on abelian varieties.
We develop an analogue of Eisenbud-Floystad-Schreyers Tate resolutions for toric varieties. Our construction, which is given by a noncommutative analogue of a Fourier-Mukai transform, works quite generally and provides a new perspective on the relati onship between Tate resolutions and Beilinsons resolution of the diagonal. We also develop a Beilinson-type resolution of the diagonal for toric varieties and use it to generalize Eisenbud-Floystad-Schreyers computationally effective construction of Beilinson monads.
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations and monodromy-weight conjecture. On the way to establish these results, we introduce and prove other results of independent interest. This includes a generalization of the results of Adiprasito-Huh-Katz, Hodge theory for combinatorial geometries, to any unimodular quasi-projective fan having the same support as the Bergman fan of a matroid, a tropical analog for Bergman fans of the pioneering work of Feichtner-Yuzvinsky on cohomology of wonderful compactifications (treated in a separate paper, recalled and used here), a combinatorial study of the tropical version of the Steenbrink spectral sequence, a treatment of Kahler forms in tropical geometry and their associated Hodge-Lefschetz structures, a tropical version of the projective bundle formula, and a result in polyhedral geometry on the existence of quasi-projective unimodular triangulations of polyhedral spaces.
Using the mirror theorem [CCIT15], we give a Landau-Ginzburg mirror description for the big equivariant quantum cohomology of toric Deligne-Mumford stacks. More precisely, we prove that the big equivariant quantum D-module of a toric Deligne-Mumford stack is isomorphic to the Saito structure associated to the mirror Landau-Ginzburg potential. We give a GKZ-style presentation of the quantum D-module, and a combinatorial description of quantum cohomology as a quantum Stanley-Reisner ring. We establish the convergence of the mirror isomorphism and of quantum cohomology in the big and equivariant setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا