ﻻ يوجد ملخص باللغة العربية
We show that very general hypersurfaces in odd-dimensional simplicial projective toric varieties verifying a certain combinatorial property satisfy the Hodge conjecture (these include projective spaces). This gives a connection between the Oda conjecture and Hodge conjecture. We also give an explicit criterion which depends on the degree for very general hypersurfaces for the combinatorial condition to be verified.
We review a combinatoric approach to the Hodge Conjecture for Fermat Varieties and announce new cases where the conjecture is true.
Faltings proved that there are finitely many abelian varieties of genus $g$ of a number field $K$, with good reduction outside a finite set of primes $S$. Fixing one of these abelian varieties $A$, we prove that there are finitely many smooth hypersu
We develop an analogue of Eisenbud-Floystad-Schreyers Tate resolutions for toric varieties. Our construction, which is given by a noncommutative analogue of a Fourier-Mukai transform, works quite generally and provides a new perspective on the relati
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations
Using the mirror theorem [CCIT15], we give a Landau-Ginzburg mirror description for the big equivariant quantum cohomology of toric Deligne-Mumford stacks. More precisely, we prove that the big equivariant quantum D-module of a toric Deligne-Mumford