ﻻ يوجد ملخص باللغة العربية
Rank data arises frequently in marketing, finance, organizational behavior, and psychology. Most analysis of rank data reported in the literature assumes the presence of one or more variables (sometimes latent) based on whose values the items are ranked. In this paper we analyze rank data using a purely probabilistic model where the observed ranks are assumed to be perturbe
Nonparametric empirical Bayes methods provide a flexible and attractive approach to high-dimensional data analysis. One particularly elegant empirical Bayes methodology, involving the Kiefer-Wolfowitz nonparametric maximum likelihood estimator (NPMLE
The simultaneous estimation of many parameters $eta_i$, based on a corresponding set of observations $x_i$, for $i=1,ldots, n$, is a key research problem that has received renewed attention in the high-dimensional setting. %The classic example involv
Empirical Bayes methods have been around for a long time and have a wide range of applications. These methods provide a way in which historical data can be aggregated to provide estimates of the posterior mean. This thesis revisits some of the empiri
Count data are collected in many scientific and engineering tasks including image processing, single-cell RNA sequencing and ecological studies. Such data sets often contain missing values, for example because some ecological sites cannot be reached
A single primary sampling unit (PSU) per stratum design is a popular design for estimating the parameter of interest. Although, the point estimator of the design is unbiased and efficient, an unbiased variance estimator does not exist. A common pract