ترغب بنشر مسار تعليمي؟ اضغط هنا

GRIM-filter: fast seed filtering in read mapping using emerging memory technologies

89   0   0.0 ( 0 )
 نشر من قبل Jeremie Kim
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivation: Seed filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. Read mappers 1) quickly generate possible mapping locations (i.e., seeds) for each read, 2) extract reference sequences at each of the mapping locations, and then 3) check similarity between each read and its associated reference sequences with a computationally expensive dynamic programming algorithm (alignment) to determine the origin of the read. Location filters come into play before alignment, discarding seed locations that alignment would have deemed a poor match. The ideal location filter would discard all poor matching locations prior to alignment such that there is no wasted computation on poor alignments. Results: We propose a novel filtering algorithm, GRIM-Filter, optimized to exploit emerging 3D-stacked memory systems that integrate computation within a stacked logic layer, enabling processing-in-memory (PIM). GRIM-Filter quickly filters locations by 1) introducing a new representation of coarse-grained segments of the reference genome and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for 5% error acceptance rates, GRIM-Filter eliminates 5.59x-6.41x more false negatives and exhibits end-to-end speedups of 1.81x-3.65x compared to mappers employing the best previous filtering algorithm.



قيم البحث

اقرأ أيضاً

Motivation: Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. Results: We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x--6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x--3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. Availability: The code is available online at: https://github.com/CMU-SAFARI/GRIM
Motivation: Optimizing seed selection is an important problem in read mapping. The number of non-overlapping seeds a mapper selects determines the sensitivity of the mapper while the total frequency of all selected seeds determines the speed of the m apper. Modern seed-and-extend mappers usually select seeds with either an equal and fixed-length scheme or with an inflexible placement scheme, both of which limit the potential of the mapper to select less frequent seeds to speed up the mapping process. Therefore, it is crucial to develop a new algorithm that can adjust both the individual seed length and the seed placement, as well as derive less frequent seeds. Results: We present the Optimal Seed Solver (OSS), a dynamic programming algorithm that discovers the least frequently-occurring set of x seeds in an L-bp read in $O(x times L)$ operations on average and in $O(x times L^{2})$ operations in the worst case. We compared OSS against four state-of-the-art seed selection schemes and observed that OSS provides a 3-fold reduction of average seed frequency over the best previous seed selection optimizations.
Next generation sequencing technology rapidly produces massive volume of data and quality control of this sequencing data is essential to any genomic analysis. Here we present MEEPTOOLS, which is a collection of open-source tools based on maximum exp ected error as a percentage of read length (MEEP score) to filter, trim, truncate and assess next generation DNA sequencing data in FASTQ file format. MEEPTOOLS provides a non-traditional approach towards read filtering/trimming based on maximum error probabilities of the bases in the read on a non-logarithmic scale. This method simultaneously retains more reliable bases and removes more unreliable bases than the traditional quality filtering strategies.
DNA sequencing is the physical/biochemical process of identifying the location of the four bases (Adenine, Guanine, Cytosine, Thymine) in a DNA strand. As semiconductor technology revolutionized computing, modern DNA sequencing technology (termed Nex t Generation Sequencing, NGS)revolutionized genomic research. As a result, modern NGS platforms can sequence hundreds of millions of short DNA fragments in parallel. The sequenced DNA fragments, representing the output of NGS platforms, are termed reads. Besides genomic variations, NGS imperfections induce noise in reads. Mapping each read to (the most similar portion of) a reference genome of the same species, i.e., read mapping, is a common critical first step in a diverse set of emerging bioinformatics applications. Mapping represents a search-heavy memory-intensive similarity matching problem, therefore, can greatly benefit from near-memory processing. Intuition suggests using fast associative search enabled by Ternary Content Addressable Memory (TCAM) by construction. However, the excessive energy consumption and lack of support for similarity matching (under NGS and genomic variation induced noise) renders direct application of TCAM infeasible, irrespective of volatility, where only non-volatile TCAM can accommodate the large memory footprint in an area-efficient way. This paper introduces GeNVoM, a scalable, energy-efficient and high-throughput solution. Instead of optimizing an algorithm developed for general-purpose computers or GPUs, GeNVoM rethinks the algorithm and non-volatile TCAM-based accelerator design together from the ground up. Thereby GeNVoM can improve the throughput by up to 113.5 times (3.6); the energy consumption, by up to 210.9 times (1.36), when compared to a GPU (accelerator) baseline, which represents one of the highest-throughput implementations known.
Across the tree of life, populations have evolved the capacity to contend with suboptimal conditions by engaging in dormancy, whereby individuals enter a reversible state of reduced metabolic activity. The resulting seed banks are complex, storing in formation and imparting memory that gives rise to multi-scale structures and networks spanning collections of cells to entire ecosystems. We outline the fundamental attributes and emergent phenomena associated with dormancy and seed banks, with the vision for a unifying and mathematically based framework that can address problems in the life sciences, ranging from global change to cancer biology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا