ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental study of antiferromagnetic resonance in noncollinear antiferromagnet Mn$_{3}$Al$_{2}$Ge$_{3}$O$_{12}$

67   0   0.0 ( 0 )
 نشر من قبل Vasiliy N. Glazkov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured antiferromagnetic resonance (AFMR) frequency-field dependences for aluminum-manganese garnet Mn$_{3}$Al$_{2}$Ge$_{3}$O$_{12}$ at frequencies from 1 to 125 GHz and at the fields up to 60 kOe. Three AFMR modes were observed for all orientations, their zero field gaps are about 40 and 70 GHz. Andreev-Marchenko hydrodynamic theory [Sov. Phys. Usp. 130, 39 (1980)] well describes experimental frequency-field dependences. We have observed hysteresis of resonance absorption as well as history dependence of resonance absorption near gap frequencies below 10 kOe in all three measured field orientations, which are supposedly due to the sample domain structure. Observation of the AFMR signal at the frequencies from 1 to 5 GHz allows to estimate repulsion of nuclear and electron modes of spin precession in the vicinity of spin-reorientation transition at H||[100].



قيم البحث

اقرأ أيضاً

We present the detailed inelastic neutron scattering measurements of the noncollinear antiferromagnet Mn$_3$Ge. Time-of-flight and triple-axis spectroscopy experiments were conducted at the temperature of 6~K, well below the high magnetic ordering te mperature of 370~K. The magnetic excitations have a 5-meV gap and display an anisotropic dispersive mode reaching $simeq 90$~meV at the boundaries of the magnetic Brillouin zone. The spectrum at the zone center shows two additional excitations that demonstrate characteristics of both magnons and phonons. The textit{ab initio} lattice-dynamics calculations show that these can be associated with the magnon-polaron modes resulting from the hybridization of the spin fluctuations and the low-energy optical phonons. The observed magnetoelastic coupling agrees with the previously found negative thermal expansion in this compound and resembles the features reported in the spectroscopic studies of other antiferromagnets with the similar noncollinear spin structures.
We present an algorithm for the numeric calculation of antiferromagnetic resonance frequencies for the non-collinear antiferromagnets of general type. This algorithm uses general exchange symmetry approach cite{andrmar} and is applicable for descript ion of low-energy dynamics of an arbitrary noncollinear spin structure in weak fields. Algorithm is implemented as a MatLab and C++ program codes, which are available for download. Program codes are tested against some representative analytically solvable cases.
A single-crystal sample of the frustrated quasi one-dimensional quantum magnet Cs$_{2}$Cu$_{2}$Mo$_{3}$O$_{12}$ is investigated by magnetic and thermodynamic measurements.A combination of specific heat and magnetic torque measurements maps out the en tire $H$-$T$ phase diagram for three orientations.Remarkably, a new phase emerges below the saturation field, irrespective of the crystal orientation. It is suggested that the presaturation phase represents spin-nematic order or other multi-magnon condensate. The phase diagrams within the long-range ordered dome are qualitatively different for each geometry. In particular, multiple transitions are identified in the field along the chain direction.
We performed inelastic neutron scattering measurements on a polycrystalline sample of a classical kagome antiferromagnet NaBa$_{2}$Mn$_{3}$F$_{11}$ to investigate the possibility of a dispersionless zero-energy excitation associated with rotation of spins along the chains. The observed spectra indeed exhibit such an excitation with strong intensity at low energy, as well as dispersive excitations with weak intensity at high energy. Combining the measurements with calculations from linear spin-wave theory reveals that NaBa$_{2}$Mn$_{3}$F$_{11}$ is a good realization of the classical kagome antiferromagnet which exhibits a dispersionless mode lifted by the magnetic dipole-dipole interaction.
143 - O. P. Sushkov 2011
The present work addresses YBa$_{2}$Cu$_{3}$O$_{y}$ at doping below x=6% where the compound is a collinear antiferromagnet. In this region YBa$_{2}$Cu$_{3}$O$_{y}$ is a normal conductor with a finite resistivity at zero temperature. The value of the staggered magnetization at zero temperature is 0.6mu_B, the maximum value allowed by spin quantum fluctuations. The staggered magnetization is almost independent of doping. On the other hand, the Neel temperature decays very quickly from T_N=420K at x=0 to practically zero at x = 0.06. The present paper explains these remarkable properties and demonstrates that the properties result from the physics of a lightly doped Mott insulator with small hole pockets. Nuclear quadrupole resonance data are also discussed. The data shed light on mechanisms of stability of the antiferromagnetic order at x < 6%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا