ﻻ يوجد ملخص باللغة العربية
Materials science has adopted the term of auxetic behavior for structural deformations where stretching in some direction entails lateral widening, rather than lateral shrinking. Most studies, in the last three decades, have explored repetitive or cellular structures and used the notion of negative Poissons ratio as the hallmark of auxetic behavior. However, no general auxetic principle has been established from this perspective. In the present paper, we show that a purely geometric approach to periodic auxetics is apt to identify essential characteristics of frameworks with auxetic deformations and can generate a systematic and endless series of periodic auxetic designs. The critical features refer to convexity properties expressed through families of homothetic ellipsoids.
We formulate a mathematical theory of auxetic behavior based on one-parameter deformations of periodic frameworks. Our approach is purely geometric, relies on the evolution of the periodicity lattice and works in any dimension. We demonstrate its use
We show that, for any given dimension $dgeq 2$, the range of distinct possible designs for periodic frameworks with auxetic capabilities is infinite. We rely on a purely geometric approach to auxetic trajectories developed within our general theory of deformations of periodic frameworks.
Considered herein are the generalized Camassa-Holm and Degasperis-Procesi equations in the spatially periodic setting. The precise blow-up scenarios of strong solutions are derived for both of equations. Several conditions on the initial data guarant
We investigate analytically and numerically the spatial structure of the non-equilibrium stationary states (NESS) of a point particle moving in a two dimensional periodic Lorentz gas (Sinai Billiard). The particle is subject to a constant external el
Primitive inflation tilings of the real line with finitely many tiles of natural length and a Pisot--Vijayaraghavan unit as inflation factor are considered. We present an approach to the pure point part of their diffraction spectrum on the basis of a